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Unit-I Probability and Random Variables

INTRODUCTION

Most of the decision making problems are related to uncertainty. The notion of uncertainty or
chance is so common in everybody’s life that it becomes difficult to define it. In our day to day life,
every thing happening is a matter of chance. We talk about chances of one’s winning the election,
getting a handsome job etc.

The term probability means likelihood or chance or possibility. If an event is likely to occur, we
say that itis probable. Some people would prefer to call it luck. Otherwise it is improbable or failure
event. Some of the business situations like investment problem, introducing new product, stocking
decisions, individual investor are characterized by uncertainty.

Probability theory and stochastic differential equations (SDEs) are essential tools for analyzing
randomness and uncertainty in electrical and communication systems. Probability theory provides
a mathematical framework for quantifying uncertainty and randomness in engineering systems.

DEFINITIONS

SAMPLE SPACE : The set of all possible outcomes of some given experiment is called the sample
spaces.

EXAMPLE :
(i) In tossing a coin, sample space S = { H, T}

(i) Inrollingadie, S={1 2, 3 4,5, 6}
(iii)  If two fair coins are thrown simultaneously, S={HH,TT,TH, HT}

EVENT : Anevent A isa set of outcomes (or) a subset of the sample space S.

NOTE:
(1) The event A={a} consisting of a single element a €S is called an elementary event.

(ii) ¢ and S are also events. ¢ -impossible event; S - sure event
MUTUALLY EXCLUSIVE EVENTS : Two events A and B are called mutually exclusive if A and B
are disjoint.

(ie)if AnB = ¢
(i.e) if A and B cannot appear simultaneously.

Note: Ifevents A and B are mutually exclusive, then P(Amﬁ) = P(A)

INDEPENDENT EVENTS : If A and B are independent events then P(AnB)=P(A)-P(B)

https://doi.org/10.5281/zenodo.15089962
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AXIOMS OF PROBABILITY :

Let S be the sample space, let Z be the class of events and let P be a real valued function defined
on X. Then P is called a probability function and P(A) is called the probability of the event if the

following axioms hold.
(i) For any event A, 0<P(A)<1.

(i) P(S)=1
(iii) If A and B are mutually exclusive events then P(AUB)=P(A)+P(B).

THEOREMS ON PROBABILITY :

Theorem 1: If ¢ is the empty set, P()=0. | Theorem 2: If Ais the complement of an

event A, then P(A)=1-P(A).
Clearly, A=Aug.

A ¢ are mutually exclusive events, since

ANng=¢.

Since A and A are complement, they are
mutually exclusive, hence AMA=¢.

Now P(A) =P(AUg) = P(A) + P(4) _
We know that S=AUA

P(¢) =0. P(S)=P(AUA)
1=P(A)+P(A)
P(A)=1-P(A)
.Theorem 3: If Ac B then P(A)<P(B) and | Theorem 4: If A and B are any two events,
P(B-A)=P(B)-P(A). P(A-B)=P(A)-P(AnB).
Clearly, B=AuU(B-A) Clearly, A=(A-B)U(ANB)
P(B)=P[AU(B-A)] P(A)=P[(A-B)U(ANB)]

But A and (B—A) are mutually exclusive | g, A_ B 4ng (AN B) are mutually exclusive

events. Therefore

P(B)=P(A)+P(B-A) events. Therefore
P(B)-P(A)=P(B-A) P(A)=P(A-B)+P(ANB)
P(B)=P(A) >0

P(A-B)=P(A)-P(ANB)
P(B) > P(A)

Theorem 5: (Addition Theorem)

If A and B are any two events,

P(AuB)=P(A)+P(B)-P(ANB).
Also B =(B—A)U(Am B)

Clearly, AUB=AU(B-A) P(B):P[(B—A)U(Am B)}
P(AUB)=P(AU(B-A))




But A and B-A are mutually exclusive

events. Therefore

P(AUB)=P(A)+P(B-A)...Q1)

But AnB and B- A are mutually exclusive

events. Therefore

P(B)=P(B—A)+P(ANB)

P(B—A): P(B)—P(Am B)....(Z)
Substitute (2) in (1), we have P(AuB)=P(A)+P(B)-P(ANB)

Corollary: If A, B and C are any three events,
P(AUBUC)=P(A)+P(B)+P(C)-P(AnB)-P(BNC)-P(CnA)+P(AnBNC).

Theorem 6: If A and B are 1ndependent events then (i) A and B are independent

(ii) A and B are independent (iii) A and B are independent

Given that A and B are independent. Therefore P(AnB)=P(A)-P(B).....(1)

We know that (Amg):A—(AmB) We know that (KmB):B—(AmB)
Therefore P(ANB)=P(A)-P(ANB) Therefore P(ANB)=P(B)-P(ANB)
=P(A)-P(A)-P(B) ( )—P(A)-P(B)
A)1-P(8)] (8)[1-P(A)]
=P(A)-P(B) =P(B)-P(Z)
Hence A and B are independent Hence A and B are independent

We know that (AUB) = (K)m(B)

P(Z\mg) =P(AuUB), {De Morgan’s law}
=1-P(AUB)
=1-[P(A)+

°(8)-P(AnE)]

Hence, A and B are independent.

Theorem 8 : If A, B, C are random events in a sample space S and if they are pair wise
independent and A is independent of BUC,then A, B, C are mutually independent.

Given that A, B, C are pair wise independent.
Therefore P(Am B): P(A)~ P(B), P(BmC): P(B)-P(C),

Also A isindependent of BUC. Then P(Am(BuC)):P(A)-P(BuC) ..... (2)

P(CAA)=P(C)-P(A)....(1
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P[(AnB)U(ANC)]=P(A)[P(B)+P(C)-P(BNC)]
P(ANB)+P(ANC)—~P(ANBAC)=P(A)-P(B)+P(A)-P(C)-P(A)-P(BAC)
P(A)-P(B)+P(A)-P(C)—P(AHBHC)=P(A)-P(B)+P(A)-P(C)—P(A)-P(B)-P(C)
P(AﬁBﬁC):P(A)-P(B)-P(C)

Theorem 9 : For any two events A and B, P(AnB)<P(A)<P(AUB)<P(A)+P(B)
We know that (AnB)c A Also Ac AUB.
.. P(AnB)<P(A), by atheorem. .. P(A)<P(AUB), by atheorem.

We know that P(AuB)=P(A)+P(B)-P(AnB)
P(AuB)<P(A)+P(B), since P(AnB)>0.

Combining the three results, we have P(AnB)<P(A)<P(AUB)<P(A)+P(B)

DEMORGAN'S LAW : (i) P(AnB)=P(AJUP(B) and (ii) P(AUB)=P(A)nP(B)

DEFINITION : ( CONDITIONAL PROBABILITY )
Let A and B are any two events then, P(B/ A) is called the conditional probability of occurrence

of B when the event A has already happened and P(A/ B) is the conditional probability of
happening of A when the event B has already happened.

THEOREM 7 : (MULTIPLICATION THEOREM )
For two events Aand B, P(AnB)=P(A)-P(B/A), P(A)>0 or

P(AnB)=P(B)-P(A/B), P(B)>0

Let N bethe size of the sample space and nA be the favourable events for A and nB be the number
of events favourable to B and let NAB be the number of favourable events for the compound event
ANB.

Then the unconditional probabilities are, P(A)= r:\l_A’ P(B)= %, P(ANB)= %

Now the conditional probability P(A/ B) refer to the sample space of NB occurrences, out of which

NAB occurrences associate to occurrence of A i.e. when B has already happened.

P(A/B)z%. Similarly P(B/A)z%



nAB nAB

But P(AmB)=T Also P(AmB):T
_NAB nA _ nAB nB
" AN "B N
=P(B/A)-P(A) =P(A/B)-P(B)
P(B/A):% P(A/B):P(PA(E)B)

Hence the conditional probabilities, P(A/B) and P(B/A) are defined iff P(A)>0 & P(A)>0

Example 1: If P(A) =0.35, P(B) =0.75 and | Example 2 : If A and B are two mutually

i - = exclusive events, why the following
P(Am B) =0.15, find P ( Av B)' assignment of probabilities is not
o permissible. P(A)=03, P(ANB)=07.
P(Au B) = P(Aﬁ B), By De Morgan’s theorem

=1-P(ANB) We know thatif events A and B are mutually
=1-0.15 exclusive, then P(Amﬁ): P(A).
=0.85 But here they are not equal.

Example 3: If P(AUB)=0.8, P(AnB)=0.4 | Example 4: If P(A)=0.4, P(B)=0.6 and
and P(B)=05 determine P(A) and P(B). | P(ANB)=0.2 determine P(ANB).

P(B)=1-P(B)=1-05=05 We know that
P(ANB)=P(A)-P(ANB)
P(AUB) = P(A) +P(B)~P(ANB) ~0.4-0.2
P(A)=P(ANB)+P(AUB)-P(B) 0.2
P(A)=0.4+0.8-05
=0.7

Example 5 : If two dice are tossed simultaneously what is the probability of getting 4 as the sum
of the resultant faces?

@y, @2, @3, .., @s6),
2,0, (2,2, (2,3, ... (2,6),
Sample space S=4(31), (3,2), (33, .., (36),
(6,.1), (6,.2), (6,.3), (6,-6)

Let A be the Event of getting 4 as the sum. Then A= {(1, 3), (3,1, (2, 2)}
5



Therefore probability of getting 4 as the sum of the resultant faces is

p(a)=" _ 3
n(s) 36

Example 6: What is the probability of getting at least one head when two coins are tossed?

Sample space S ={HH, TT,TH, HT}
Let A be the event of getting at least one head . Then A={HH, TH, HT}
n(A) 3

.. Probability of getting at least one head is P(A) = nS) 4

Example 7: If 4 balls are drawn at random from a bag containing 7 white and 6 black balls what is
the probability that 3 are white?

Total number of balls is 7+6=13

Total number of ways of getting 4 balls =13C4
Total number of ways of getting 3 white balls =7C3
Total number of ways of getting 1 black ball =6C1

Let A be the event of getting 4 balls in which 3 is white and one is black ball.
The number of ways of selecting 4 balls (3W+1B) =7C3 x 6C1

n(A) 7C3x6Cl 42
n(S)  13C4 143

.. Probability of getting 3 white balls while taking 4 balls P(A) =

Example 7: Two dice are thrown. What is the probability that the sum is (a) greater than 9
(b) neither 8 nor 11

Let S denotes the sample space when two dice are thrown. Then n(S) =36
(a) Let A be the event of getting the sum of faces greater than 9.i.e. sum = 10 or 11 or 12.

Let A be the event of getting the sum of faces =10, which is possible if A = {(4, 6), (6,4), (5,5)} :

3

Therefore P(A)=—
erefore P(A) 26

Let A, be the event of getting the sum of faces =11, which is possible if A, = {(5, 6), (6,5)} :

Therefore P(A,)= %

Let A, be the event of getting the sum of faces =12, which is possible if A, = {(6, 6)} .

Therefore P(A;)= 3_16

By addition theorem, P(A)=P(A)+P(A)+P(A)

3 2 1
=—t—+—

36 36 36
_1
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(b) Let A be the event of getting the sum of faces is neither 8 nor 11.

Let B be the event of getting sum of two dice value is 8 and hence

B={(2,6), (6,2), (35), (5,3), (4,4)}. Also P(B) z%

Let C be the event of getting sum of two dice value is 11 and hence C = {(5, 6), (6, 5)} . Also

P(C) =%

..The required probability P(A) = P(§ 06)

Example 8: A problem of statistics is given to three students A, B and C whose chances of solving

itare Zi' %, % respectively. What is the probability that

i) no one will solve the problem
ii) only one will solve the problem

iii) at least one will solve the problem ( or ) the problem will be solved?

Let A be the event of solving the problem by

the student A. Given that P(A)= %

Let B be the event of solving the problem by

the student B . Given that P(B)= %

Let C be the event of solving the problem by

the studentC. Given that P(C)= % .

Here the events A, B and C are independent.

Let A be the event of not solving the problem

by the student A. Therefore P(Z\) = %

Let B be the event of not solving the problem

by the student B. Therefore P(g) = %

Let C be the event of not solving the problem

by the studentC. Therefore P(E) = % .

Here the events K, B and C are independent.

(i) probability that no one will solve the problem is = P(ng m(_Z)




(ii) probability that only one will solve the problem

:P(Amﬁma)+P(KmBmE)+P(ZmBmC)
=P(A)-P(B)-P(C)+P(A)-P(B)-P(C)+P(A)-P(B)-P(C)
123 113 121

+
234 234 2 34
11

24

I
|
i
|
+
!
i
i
|
|
|

(iii) probability that at least one will solve the problem(the problem will be solved)

= 1 - probability that no one will solve the problem

1
4

_3
4
Example 9: A and B throw alternately a pair of dice. A wins if he throws 6 before B throws 7
and B wins if he throws 7 before A throws 6. If A throws first what is his chance of winning?

Let S denotes the sample space when two dice are thrown. Then n(S) =36

Let A be the event of getting sum 6 (i.e. A wins)

Sample space for the event A= {(1, 5), (52, (2,4), (4,2), (3, 3)} . Therefore P(A) = %

Let A be the event of not getting sum 6 (i.e. A fails)

Therefore P(z\) =1— i = %
36 36

Let B be the event of getting sum 7 (i.e. B wins)
Sample space for the event B = {(2,5), (5,2), (3,4), (4,3, (6,1, (1, 6)} :

Therefore P(B) = 5 =
36

|

Let B be the event of not getting sum 7 (i.e. B fails)

Therefore P(g) =1- l = E
6 6



Now A throw first. The possibilities of his winning are as follows:

Events Probability
A wins P(A)
or _
A fails, B failsand A wins P(ANBNA)
or
A fails, B fails, A fails, B failsand A wins P(Kmﬁmz\mﬁm A)
and so on

.. probability for A’s win = P(A)+ P(KmEmA) +P(Rm§mﬂm§mA)+ .......

=P(A)+ P(A)-P(B)-P(A) +P(A)-P(B)-P(A)-P(B)-P(A)+....

Example 9 : A student takes his examination in four subjects A, B, C and D. He estimates his

chance of passing the subjects is i, §, % and % respectively. To qualify he must passin A and

at least in two other subjects. What is the probability that he qualifies?

Let E,, E,, E;, E, be the event of passing in | Let E, E,, E,, E, be the event of not passing

the subjects A, B, C and D respectively. in the subjects A, B, C and D respectively.
Given that Therefore

_4 _3 _5 _2 1 1 =\ 1 = 1
o(E)- 1 (612 P(E)- 2 P(E) -2 | (E)-Lp(E)-L.0(E)- L p(E)-

Given that to qualify, he must pass in the subject A and at least in two other subjects.

.. For this the mutually exclusive possibilities are
{Passin A, B,C and failin D} or {Passin A, B, D and failin C} or {Passin A, D, C and fail in

B} or {Passin A B,C and D}

Required probability

=P(E.NE,NE,NE,)+P(E NE,NE,NE,)+P(E NE,NE,NE,)+P(E,NE,NE,NE,)

=P(E,)-P(E,)-P(E;)-P(E,)+P(E)-P(E,)-P(E;)-P(E,)+P(E))-P(E,)-P(E;)-P(E,)
+P(E)-P(E,)-P(E,)-P(E.)



11 1 1
= — —_t — 4 —

3 6 15 9
!

90

Example 10 : A coin is biased so that a head is twice as likely to occur as a tail. If the coin is tossed
three times what is the probability of getting exactly two tails?

Let H, T be the event of getting head and tail respectively.
Given that the coin is biased so that a head is twice as likely to occur as a tail.

P(H)=§ and P(I')z%

The chances of getting exactly two tails = {TTH or THT or HTT }, which are all mutually exclusive.
Now required probability =P(T T AH)+P(HATAT)+P(TAHANT)
P

= P(T)-P(T)-P(H)+P(H)-P(T)-P(T)+P(T)-P(H)-P(T)
=3xP(T)-P(T)-P(H)
_3xi12
333
2
"9

Example 10 : Let an urn contains 4 tickets numbered 1, 2, 3, 4 and another urn contains 6 tickets
numbered 2,4,6,7,8,9. If one of the two urns is chosen at random and a ticket is drawn at
random from the chosen urn, find the probabilities that the ticket drawn bears the number (i) 2 or
4 (ii) 3.

Given that one of the two urns is chosen at random and a ticket is drawn at random from the chosen
urn.
There are two mutually exclusive possibilities for this. They are

I: Firsturn is chosen and the ticket is drawn.

II: second urn is chosen and the ticket is drawn.

Let U; and U, be the event of selecting urn I and Il respectively.

Then P(Ul):% and P(UZ):%

(i) Let A be the event of selecting the ticket with number 2.
Then P(A/U,) and P P(A/U,) are the event of getting the ticket with number 2 after selecting the

urn I and Il respectively.

Then P(A/U1)=% and P(A/Uz)z1

~. Probability of getting the ticket with number 2 = P(A)
= P(Ul)x P(A/Ul)—i- P(UZ)X P(A/Uz)

10



Similarly, let B be the event of selecting the ticket with number 4.

Now AU B is the event of getting the ticket with number 2 or 4
Then P(AUB)=P(A)+P(B), {Since A and B are mutually exclusive events }

5 5
= — 4+ —

24 24
_>

12

(ii) Let C be the event of getting the ticket with number 3

Then P(C/U,) and P P(C/U,) are the event of getting the ticket with number 3 after selecting the

urn I and II respectively.

Then p(c:/ul)=% and P(C/U2)=%=o

.. Probability of getting the ticket with number 3 = P(C)
=P(U,)xP(C/U,)+P(U,)xP(C/U,)

Example 10 : A husband and wife appear an interview for two vacancies in the same post. The

probability of husband’s selection is % and the wife is % What is the probability that

(i) both of them will be selected.
(ii) only one of them will be selected.
(iii) none of them will be selected.

Let H and W be the event of selecting the husband and wife respectively.

] P(H)=% and p(w)zé

Let H and W be the event of not selecting the husband and wife respectively.
4

. p(E)b )
. P(H)_7 and P(W)_g
(i) Let H "W be the event of selecting both husband and wife

P(HAW)=P(H)xP(W) {Since H and W are independent events }

11
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1
7 .
1
35
ii) Let A be the event of selecting only one (either husband or wife)

A=HANW or HAW which are mutually exclusive events

P(A)=P(HAW)+P(H W)

U

(H)- P(V_V) + P(ﬁ)- P(W) {Since H and W are independent events }

~N N N e
al s

6
+ =
-

gl

(iii) Let B be the event of selecting none of them.ie. B = HAW

Example 10 : Probability that a student passes in statistics examination is — and the probability
that the student will not pass in mathematics examination is % The probability that a student will

pass in at least one of the examination is g . Find the probability that the student will pass in both

examinations.

Let S and M be the event of passing in statistics and mathematics exam respectively and S and

M are the event of not passing in statistics and mathematics exam respectively.

Given that P(S):% , P(M):g

Therefore P(M)=1- P(M) = 1_3 zg

S UM = event of passing in at least one exam and also given that P(S U M) =g
S N M = event of passing in both exams

Probability of passing in both exams = P(S NM )
=P(S)+P(M)—P(SUM) {By addition theorem }

12
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BAYE'S THEORM: Let E, E,,....., E, be n mutually disjoint events with P(E;)=0 forall i, and

for any event A which is a subset of LnJ E; such that P(A)>0, then
P(E,/A)= np( ) P(A/E)

Z A/E)

Since A is a subset of U E., we have
i=1

-2 | Utace) |

i=1

Since, (Ar\ Ei) is a subset of n mutually disjoint events, by addition theorem of probability, we
have

P(A)=Y P(ANE,)

i=1
Then by compound theorem of probability

P(A)=2. P(E)-P(AE)

i=1

Also, P(ANE,)=P(A)-P(E,

/A)

P(E,/A)=

P(E)-P(A/E,)

Z P(E)-P(A/E)

Example 1: A company producing electric relays has three manufacturing plants
producing 50, 30 and 20 percent respectively of its product. Suppose that the

probabilities that a relay manufactured by these plants is defective are 0.02, 0.05 and
0.01 respectively.

13



If a relay selected at random is found to be defective, what is the probability that it was
manufactured by plant 2?.

Let E, E, and E; be the event of selecting the electric relay which was manufactured by Plant1,
Plant2 and Plant3 respectively.

Given that P(E;)=50%=0.5, P(EZ) =30%=0.3, P(Eg) =20%=0.2

Let A be the event of selecting defective electric relay. Also given that

P(A/ El) =0.02, P(A/ E2) =0.05, P(A/ E,)=0.01

Required probability = Probability of selecting defective relay which was manufactured by Plant?2.

) P(E,)-P(A/E,)
) (&) P(ATE) +P(E.)-P(AIE,) < P(E,)-P(AIE)

(0.35) (0.04)

(025) (0.05)+(0.35) (004)+(0.04) (0.02)

=0.5128

Example 2: Suppose that coloured balls are distributed in three indistinguishable boxes as
follows:

Box 1 Box 2 Box 3
Red 2 4 3
White 3 1 4
Blue 5 3 5

A box is selected at random from which a ball is selected at random and it is observed to be red.
What is the probability that the box 3 was selected?

Let E, E, and E; be the events of selecting the boxes A, B and C respectively.

1 1 1
. P(E)==, P(E,)==, P(E,)==
( 1) 3’ ( 2) 3’ ( 3) 3
Now let A be the event of selecting the red ball.
2 1 4 1 3
Then P(A/E)=—==, P(A/E,)====, P(A/E)=—=
en P(ATE,) 10 5’ (ATE;) g 2 (ATE;) 12

NP

Required probability = Probability of selecting the red ball which came from box 3

P(E,/A)=




Example 3: Three machines A, B and C are producing 20,000, 40,000 and 60,000 bolts per shift.
They are known to produce 4% , 3% and 2% defective bolts respectively. If a bolt is chosen at
random from bolts produced in a shift and was found to be defective . What is the probability that
it was produced by B ?

Let E, E, and E; be the event of selecting the bolts which was manufactured by A, B and C

respectively.
_20.000

1
( 1)_1,20,000_6' ( 2)_1,20,000_

40.000 _1 60.000 1
- ==, P(Es) =" -
3 1,20,000 2

Let A be the event of selecting the defective bolt.
4 3 2
P(A/E))=4%=——, P(A/E,)=3%=—, P(A/E;)=2%=——
(AVE)=4%=105" PIAIE)=3%=155, P(A/E)=2%=15

Required probability = Probability of getting defective bolt which was produced by B.

P(E,/A)=
(E:/A) P(E,)-P(A/E)+P(E,)-P(A/E,)+P(E,)-P(A/E,)
1.3
Ix
_ 3°100
1.4 ,1,3,1,.2

Example 4: A has ascooter and a car. About three fourths of the time he uses the scooter and uses
the car otherwise. When he uses the scooter he comes to the office on time about 75% of the time
. If he uses the car he gets to his office on time about 60% of the time. On a given, day he was late
to the office. What is the probability that he came to the office by scooter.

Let E,, E, be the events of using the scooter and car to come to the office respectively.

Given that P(E1)=%' P(Ez)zi.

Let A be the event of coming to the office by late.

When he uses the scooter he comes to the office on time about 75% of the time. If he uses the car
he gets to his office on time about 60% of the time.

Hence, when he uses the scooter he comes to the office by late about 25% of the time. If he uses the
car he gets to his office by late about 40% of the time.

- P(AIE)=25%=22=1 p(AIE,)=4006=20 _2
100 4 100 5

Required probability = Probability of coming to the office by late when he came to the office by
scooter.
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P(El)'P(A/El)
P(El)-P(A/El)+ P(Ez)'P(A/EZ)

P(E,/A)=

_L
23

Random Variable

Let S be the sample space of an experiment. Arandom variable X isareal valued function defined
on S. ie.foreach seS thereisareal number X(s)= p.

Example: Suppose a coin is tossed twice. The sample space is S :{HH, 1T, TH, HT}. Let X
denote the ‘number of heads’ appeared. Then X is a random variable with values X (HH ) =2,

X (TH)=X(HT)=1, X(TT)=0. Therefore the values of X are0, 1, 2.

Note: Arandom variable X is said to be ‘Discrete’ if it takes a finite number of values or countably
infinite number of values. The above example is discrete.

Probability Mass Function or Probability Function: Let X be a discrete random variable which
takes the values X, X,, Xs,.....X,,. Let P[X = Xl]: p, be the probability of X,. Then the function p is

called the probability mass function if p(xi ) >0 foralli and z p(xi ) =1.

i=1
Note: The probability distribution (i.e the values of X and its probability) is usually displayed in
the form of a table.

X X X, O X,
P(X =x,) P(X =x,) P(X =x,) P(X =x,)
P(X = X) p( 1) p(Xz) p(XS) ..... p(xn)
P: P, Ps Py

Note: P[X <x,|=x +X, +X;, P[X <x]=%+x,

PIX 2 x,]= X, + %, + Xg oo+ X, =1-P[X < x;]  P[X > X, ]=X, + Xg + oo+ X, =1— P[X < x,]

Necessary formulae:

Mean = First Moment about origin 2, = E[X]= Z x; p(x;)

NOTE:

1. Expectation E(X)is a theoretical concept and represents the average value of the random

variable.
2. Expectation value need not be one of the possible outcomes of the random variable.
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3. Expectation of the random variable can be finite or infinite. If the random variable X takes finite
number of values , then E(X) is finite. If E(X) is infinite , then the random variable X takes

infinite number of values.

Properties of Expectation :
. E(cX)=cE(X) where ¢ is a constant.

Uy

2. E(c)=c where c isa constant.
E(aX +b)=aE(X)+b where a and b are constants.

w

i

E[ f(x)+g(x)]=E[ f(x)]+E[g(x)] where f and g are two functions such that E[ f (x)]
and E[g (x)] are finite.

Second Moment about origin g, = E[X 2]: > x7p(x)

Variance of X = E[X 2]—[E(X ) and V(aX +b)=a®v(X)
Moment Generating Function M, (t)= E[etX ] =>"e"p(x)

1 =E(X)=M;(0), u =E(X?*)=M,(0)

1

1, =E( X)) = coeficient of t1_| in the expansion of M (t)

2
1, =E(X?)=coeficient of t2_| in the expansion of M (t)

Cumulative Distribution Function F(x,)=P(X <x,) and P(X =x,)=F(x,)-F(x_,) with
F(-0)=0, F(o)=1

Example 1: Let X be the random variable which denotes the number of
heads in three tosses of a fair coin. Determine the probability mass function

of X.

Sample space when tossing coins three times is
{HHH,THH, HTH, HT, HHT, TTH, HTT,TTT}

Let X denotes the random, variable of getting heads

X 0 1 2 3
P(X =x) 1/8 3/8 3/8 1/8

Example 2: Letthe random variable X denotes the sum obtained ‘m’ when rolling a
pair of fair dice. Determine the probability mass function of X .

Let the random variable X represents the sum of numbers on them when two dice are
thrown.

17



Possible (x,y) Sum X =x+y | P(X=x)
(1,1) 2 1/36
(1,2),(2,1) 3 2/36
(1,3),(2,2),(3,1) 4 3/36
(1,4),(2,3), (3,2),(4,1) 5 4/36
(1,5),(2,4)(3,3),(4,2) (5,1) 6 5/36
(1,6),(2,5)(3,4),(4,3)(5,2),(6,1) 7 6/36
(2,6),(3,5)(4,4),(5,3) (6,2) 8 5/36
(3,6),(4,5)(5,4),(6,3) 9 4/36
(4,6),(5,5) (6,4) 10 3/36
(5,6),(6,5) 11 2/36
(6,6) 12 1/36

Example 3: Evaluate the Mean of a random variable X if its probability distribution is as

follows:

-2

-1

0

2

a

2a

a

P(X =x) a

Mean E(X)= Z x p(x) =

—2a—a+0(2a)+a+2a=0

Example 4: If a random variable X takes the values 1, 2, 3, 4, such that
2P(X =1)=3P(X =2)=P(X =3)=5P(X =4). Find the probability distribution

of X.

Let P(X =3)=k.

Then from the given data, we get P(X =1)=g, P(X=2)=

We Know that P(X =1)+P(X =2)+P(X =3)+P(X =4)=1

E+E+k+5:l
2 3 5
6k _,
30
k=30
61

Required probability distribution is

X=x 1 2 3 4
15 10 30 6

P(X = X) —_— a

61 61

18
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Example 5: If the range of X is the set{0,1,2,3,4} and P(X =x)=0.2, determine

the mean and variance of the random variable.

We tabulate the values of X and its probabilities.

X 0 1 2 3 4
P(x) 0.2 0.2 0.2 0.2 0.2
x-P(x) 0 0.2 0.4 0.6 0.8
x*-P(x) 0 0.2 0.8 1.8 3.2

4
We know that Mean E(X) :Zx P(x)=0+0.2+0.4+0.6+0.8=2
0
4
E(X?)=Y.x*P(x)=0+0.2+0.8+1.8+3.2=6
0

Var(X)=E(X?)-[E(X)] =6-(2)*=2
Example 6: Arandom variable X has the following probability function:

X =x0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k kP 2k? 7kP+k

i. Find k ii. Evaluate P(X < 6), P(X >6),
iii. Find the distribution function of X
iv. Find the least value of ‘a’ such that P( ) >0.5.

I We know that ZP(X)z
10k* +9k =1
10k?* +9k —1=0

k=-1or k=i
10

But P(X) cannot be negative. Hence k = -1 is neglected. Hence k = %

8§, 1 _81
P(X <6)=P(0)+P{)+..... 8k +k? = —
i (X <6)=P(0)+ P@)+ ...+ P(5) =Bk +k* = o+ - =2 o
9 1 _19
P(X >6)=P(6)+P(7)=9k* +k = —
( )= P(6)+ P(7)=9Kk" + 100 10 100
or P(X>6)=1-P(X <6)= - 819
100 100

19
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iii. F(0)=P(X<0)=P(0)=0

F(1)=P(X <1)=P(0)+P@1)=k =%

F(2)=P(X <2)=P(0)+P@1)+P(2)=3k = %

F(3)=P(X <3)=P(0)+..... +P(3)=5k=%

F(4)=P(X <4)=P(0)+..... +P(4)=8k=%

F(5)=P(X <5)=P(0)+..... +P(5)=8k+k2=%+$=%

F(6)=P(X <6)=P(0)+..... +P(6)=8k+3k2=%+%=%

F(7)=P(X <7)=P(0)+..... +P(7)=9k+10k2=%+%=%=1
v, P(X<2)=P(0)+P(1)+P(2)=3k=—>

P(X <3)=P(0)+ +P(3)=5k=%=%

P(X <4)=P(0)+ +P(4):8k:%>% and hence a=4

Example 7: Find the Moment Generating Function, Mean, Variance of the distribution

P(X=x)=%, x=12,3,..... Alsofind P(X =even), P(X =odd), P(X =divisible by 3).

Mx(t):E[e”}:Zj: e p(x)




Mean

Il
N |~
1
=
+
N
1/
N~
~__
+
N
o |
TN
N~
~__
N
[

Il

N NP
=

|
N| -

= 12.%+22.%+32.%+ .........

- 4 fevaZoof2) o]

= % [l+4x+9x2+ .......... ]
1 -1
=3 (1+x)[ 1-x ]
-3
I
2 2 2
=6

var(X) =E[ x?|-[E(X)]
= 6-4
= 2

P[X =even]|=P[X =2]+ P[X =4]+P[X =6]+ ........

1 1 1
?JF?JFFJF .........



Example 8: Suppose a player plays the following game. A fair die is tossed. If 1 or 2 occurs, he
losses Rs. 30; if 3 or 4 or 5 occurs, he gains Rs. 50; If 6 occurs, he gains Rs. 90. If there is an entry
charge, what is the amount he will be willing to bet if the game is to be to his advantage in the long

run?

In the experiment of tossing the fair die, P(1) = P(2) = P(3) = P(4) = P(5) =P(6) =

1 1 1
— §+?+§+ .........
1,1 1

1

\I

1
2

1
=

Let X represents the amount gains by the player i.e. X =-30, 50, 90.

If 1 or 2 occurs, the player
losses Rs.30. Therefore

P(X=-30)=P@)+P(2)

If 3 0or 4 or 5 occurs, the player
gains Rs. 50. Therefore

P(X =30)=P@)+P(2)+P(5)

If 6 occurs, he gains Rs. 90.
Therefore

P(X =90) = P(6)

1 1 1 11 1
=—+= =—+=—+= =—
6 6 6 6 6 6
1 1
3 2
Hence the probability distribution is
X - 30 50 90
P(X =x) 2 3 1
6 6 6

Expected gain of the player = E(X)

=ZX:XP(X =X)

-(an) g s 2 s 3)

=30

He should be willing to bet at most Rs. 30 per play.
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Example 8: A box contains 5 red balls and 5 green balls. Balls are drawn one by one without
replacement until a green ball is drawn. Let X denote the number of the draw in which the first
green ball is drawn. Find the probability distribution of X and its expectation.

Given that the box contains 5 red balls and 5 green balls.

Now the balls are drawn one by one without replacement until a green ball is drawn.
It may be done in any of the following way.

(1) The green ball is drawn in first time.

(2) The red ball is drawn in first time and then the green ball is drawn.

(3) The red balls are drawn in first two times and then the green ball is drawn.

(4 ) The red balls are drawn in first three times and then the green ball is drawn.
(5) The red balls are drawn in first four times and then the green ball is drawn.

(6) The red balls are drawn in first five times and then the green ball is drawn.

Let X denote the number of the draw in which the first green ball is drawn.
Hence X=1,2,3,4,5,6.

Now P(X =1)= 5¢, 5 1 P(X =3)= 5C, X4C1X5C1:£Xﬂx§:i
10C, 10 2 10C, 9C, 8C, 10 9 5 36
P(X :2): 5C, xgzix§:£ P(X :4): 5C, ><4C1><3C1><5Cl :ixﬂx§x§:£
10C, 9C, 10 9 18 10C, 9C, 8C, 7C, 10 9 8 7 84
Similarly, P(X =5)= >, P(X =6)=——
252 252
Hence the probability distribution of X is
X 1 2 3 4 5 6
P(X=x) ! S 5 5 5| L
2 18 36 84 252 252

Expected number of drawn = E (X))

=ZX:XP(X =X)

:ZI.><E+2><£+3><£+4><£+5><i+6><i
2 18 84 252 252

2610

1260

12

Continuous Random Variable
A random variable X is said to be ‘continuous’ if it takes all values in an interval.

Probability Density Function or Probability Function: Let X be arandom variable which takes
all values in an interval (as X< b). Then the function f(x) is called the probability density

function of X if f(x)>0 forallx and j f(x)dx =1.
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Necessary Formulae:

Mean = First Moment about origin = 4, = E[X]= J. x f(x)dx

Second Moment about origin = u, = E[X 2]2 J- x? f(x)dx

Variance of X = E[X 2]— [E(X)f and V(aX +b)=a?V(X)
Moment Generating Function M, (t)= E[e”]: J. e f(x) dx

1 =E(X)=M;(0), u =E(X?*)=M,(0)
Pla< X <b]=Pla< X <b]=] f(x)dx

a

Cumulative Distribution Function F(x)=P(X < x)= J f(x)dx with F(-o0)=0, F(0)=1

d
Note: CDF must be evaluated in each interval from - to co.  Also & F(X) = f (X)

Properties of CDF F(x).

If F(X) is a distribution function of a random variable X and if a<b, then,

P(a<X <b)=F(b)-F(a).

If F(x) is the distribution function of a random variable X, then 0<F(x)<1 and
F(X)<F(x) if x<y.

Example 1: A continuous random variable X has the probability density function
f(x)=k(1+x), 2<x<b5. Find P(X <4).

Since f(x) isa pdf,

:J. f(x)dx
jk(1+ x)dx =1 :
2 ] :J.k(1+ X )dx
K {(1—% X)Z} 1 2 4
2, ]
5@6—ﬂ=1 S
2 k
’ = ~[25-9]
< 16
T 27
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Example 2: If a random variable X has the probability density function
f(x)=3x?0<x<1

~, find ‘k’ such that P(X >k)=0.05.
= 0, otherwise

Given that P(X >k)=0.05

P(k <X <1)=0.05

1
[ f(x)dx=0.05
k
1
I 3x2 dx = 0.05
k
3 1
3[)‘—} ~0.05
3 k
]2
100
Kiogo 2 - ie. k=3/£=0.983
100 100 100

Example 3: Find the cumulative distribution function of the random variable with
probability density function f(x)=x if 0<x<1

=2-xif 1<x<2

=01if 2<x<w

Also find the value of P(0.5< X <15), P(1<X <2), P(2<X <3).

flx)=0 flx) =x flx) =2 —x flx)=0

X= Xx=0 Xx=1 X=2 X=

CDF in the interval (- o, 0)

F(x)=P(X <x)=P(-o0 < X <x):JX. f(x)dx = I 0dx =0

—00

CDF in the interval (0,1)

F(x)=P(X <x)=P(-0 < X <x)=i[ f(x)dx=.(i 0 dx +j X dx ={X—22T: X

—00

CDF in the interval (1, 2)
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F(x)=P(-o0 < X <x):i f(x)dx = j. de+j X dx +i 2—x dx
—o —0 0 1

:H{M} 1 @ 1, ¥

2 -2 2 -2 2 2

1

CDF in the interval (2, o)

X

F(X)zP(—oo<X<X)=J. f(x)dx:j' de+j xdx+J2. 2—xdx+T 0 dx
—0 0 1 2

2! 27
2], | -2 |, 22

Therefore F(x)= ,in —o<x<0

F(x)=

0
2
X in0<x<1
2

2
F(x):l—@, in1<x<2

F(x) =1 , iIn2<x<w
P(O.5<X<1.5):F(l.5)—F(O.5) P(1<X<2):F(2)—F(1) P(2<X <3)=F(3)-F(2)
-0 3] o
=0.75 1
2

Example 4: The mileage X (in thousand of miles) which car owners get with a certain
kind of tyre is a random variable having a probability density function

f (x) = 2—1Oe20 , x> 0. Find the probabilities that one of these tyres will last (i) at most

10,000 miles (ii) atleast 30,000 miles (iii) anywhere from 16,000 to 24,000 miles.

Given f(x)=%e2°, 0< X

(i) Probability that the tyre will last at most 10,000 miles

10

0 o1 ® 1 1
P[x <10]=P0< X <10]= | %e 2 dx:z—lo © - ={ 2 —1} —1-¢ 2
0 -

20 |,

(ii) Probability that the tyre will last at least 30,000 miles
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24

Ly 20
PlL6 < X <24]= | %e 2 o|x=2—1O ¢ - :{
16 -
20 Ju

00

Example 5: Find the M.G.F of the R.V X having the probability density function

f(x)

X

X =

= Ze 2,x>0. Also deduce the first four moments about the origin.

= 0, otherwise

The moment generating function of given f (x) is given by

My (t)= E[etx ]

= I e™ f(x)dx

= (1-2t)”
[+ 2(2t)+3(2t) +4(2t) +5(2t)" +

To find the first 4 moments about origin:
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1

E[X ] = coefficient of tl—l in the expansion of M, (t) =4

2
coefficient of % in the expansion of M,(t) = 3

m
—
X
L
Il

3

E[x3] = coefficient of % in the expansion of Mx(t) :g

E[X*] = coefficient of % in the expansion of M, (t) = —

Example 6: Find the probability density function of the random variable X ifits
cumulative distribution functionis F(x)=1-(1+x)e *, x> 0.

The pdfis 1 (x)=<_F (x)
d —x —x
- = [1 — e - x e ]
=e’ - (-xe* +e)
= x e’

Example 7: Evaluate E ( X 2) if the probability density function of a random variable is
f(x)=xe™, x>0.

E[XZ]ZJ Xzf(x) dx :j x’e *dx=74=3=6
0 0
Example 8: Find the constant K if f(x)=Kx®,0 <x <1 is the probability density

function of a continuous random variable X .

We know that
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Example 9: Evaluate P(0 < x <1) if the cumulative distribution function is
F(x)=1-(1+x)e ™, x>0.

Since we are given cumulative distribution function, P(0<x<1)=F(1)- F(0)=1-2e™

Binomial Distribution
A random variable X is said to follow binomial distribution if its probability mass function is
P[X =x]=nc, p*q"*, x=012,.n where p+q=1. Itisdenotedas X ~B(n,p)ie., n, p are

the parameters.
e It gives probability of X successin n trials.

e Ifthe trial is repeated for N times, then the required probability is N -P(x).

e If X~B(n,p) and Y =~B(n,,p) then X +Y =~ B(n, +n,,p).

Example 1. A random variable X follows Binomial distribution with mean 2, variance 4.
Give your comment on this.

Since X follows Binomial distribution, mean =np and variance =npq.
Given np=2 and npg=4

npg _ 4

Therefore 2 thisimplies q=2> 1. This is not possible. Hence given data are wrong.
np

Example 2. For a Binomial distribution of mean 4 and variance 2, find the probability of
getting i. atleast 2 successes ii. utmost 2 successes iii. P(5 <X <8)

Since X follows Binomial distribution, mean =np and variance = npq.
Given np=4 and npg=2

Therefore hpq :i = 0.5 thisimplies g = 0.5 and hence p=1-q=0.5

np
But np =2 gives n(0.5)=2 ie.n=4

The pm.f of binomial distribution is P[X =x]=nC,p*q"™, x=0,1,2,3 4

P[X=x]=4 ¢, (05) *(05)" ", x=0,1234

i. Probability of getting at least 2 success
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P[X >2]= P[X =234,........]
=1-P[X <2]=1-P[X =0]]
~1- [4c,(0.5)°(0.5)"° + 4c, (0.5)%(0.5)* "]

~1-[(05)" + 4 (0.5)(0.5)°]
ii. Probability of getting utmost 2 successes

P[X <2]= P[X =0.1,2]
lac,(05)°(0.5)*° + 4c, (0.5)%0.5)"* + + 4c, (0.5)%(05) "]

[(05)* +4(0.5)(0.5)* + 6 (0.5)? (0.5

= (05)"'L+4+6]

iii. Probability of getting success lies between 5 to 8

P5<X <8] = P[X =6,7]=0

Example 3. Find the moment generating function of Binomial distribution and hence find
the mean, variance.

The p.m.f of Binomial Distributionis P[X =x]=nc  p*q"*,x=012,......

Moment Generating Function of Binomial

Mean
Distribution is given b ,
i E[X] = My(0)
M t = E X n-—
() = E[e"] = |n (p €+aq) p e‘lo
- Y e p(x) -
x=0

E[X*] = M} (0)
np[( petq)n*let +(n-1)( pe‘q)nf2 pe‘}

np[1+(n—1) p] = np[1+np- p]

2

i etxncxpan—x

x=0

t=0

Il
>
O
>
—_—~
CDPO
©
~—
O
>
|
>
I

0 =np + n’p’~ np
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Var(X)

= E[X?]-(E[X])

= np+n’*p*—np’-n’p

= np-np’
= np(1-p)
= npq

Poisson Distribution

2

A random variable X is said to follow binomial distribution if its probability mass function is

* It gives probability of X success.

Itis denotedas X ~P(1) i.e, A is the parameter.

* Itisuseful if n islargeand p issmall.

*If X ~P(4,) and X ~P(4,) then X +Y = P(4, + 4,).

Example 1. Find the parameter ) of the Poisson distribution if P(X =1)=2P(X =2).

Given P(X =1)=2P(X =2) and X follows Poisson distribution with P[X = x]=

e * A _29‘1/12

1!

N SN[ SN

2!

e A
X!

Example 2. Find the moment generating function of Poisson distribution and hence find
mean, variance.

The p.m.f of Poisson distribution is P[X = X]

x=0
0 -1 X
e’
Z e tx
X=0 x!
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A[1+1]
= 1*+1
Var(X) = E(X?)=(E(X))" = A2 +4- 2" = 4

Example 3. If X be a random variable following Poisson distribution such that
P(X =2)=9P(X =4)+90P(X =6). Find the mean, variance of X .

The p.m.f of Poisson distribution is P[X = X]: ,X=01273

Given P(X =2)=9P(X =4)+90P(X =6)

—2 2 -1 4 -2 6
Therefore e 4 =9 e 4 + 90e A
2! 41 6!
-1 2
Cancelling on both sides, we get,
1‘ = 3 12 4 ﬂ At
1 12 360
1 35,1
1 4 4
At+312-4=0

(/12—1) (/12+4)=0
A2 =1=0
A =1

For a Poisson distribution, mean A =1 and variance A=1
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Example 4. Itis known that the probability of an item produced by a machine will be
defective is 0.05 If the products are sold in packets of 20, find the number of packets
containing at least, exactly and at most 2 defective items in a consignment of 1000 packets
using Poisson distribution.

Let X represents the number of defective items produced and it follows Poisson
-4 gx
e "4

distribution. Therefore P[X = X]:

Probability for producing one defective item is p = 0.05
Products are sold in packets of 20 and hence n= 20

Therefore A=np=20x0.05=1

-1 1 2
Probability of a packet containing exactly 2 defective is P[X = 2]: ¢ 2| = %
Therefore number of packets containing exactly 2 defectives in a consignment of
1000 packets is 1000 x 1 _500 ..
2e e

Probability of a packet containing at most 2 defective

-110 -11q1 -142
P[x <2]- P[x —012]=8 1 & L e 1" 1r, 115

0! 1! 2! e 2e

Therfore number of packets containing at most 2 defectives in a consignment of

1000 packets is 1000 x > _ 2500 ..

2e e
Probability of a packet containing at least 2 defective

P[X >2]= P[X =2,34,........]
=1-P[X<2]
=1-P[X =0, 1]

B 1{6_()1!10+e_11!11 }

_1-2
e

Therfore number of packets containing at most 2 defectives in a consignment of 1000 packets is

1000(1—2}
€
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Example 5. A manufacturer of cotton pins knows that 5% of his product is defective. If he
sells cotton pins in boxes of 100 and guarantees that not more than 10 pins will be defective.
What is the probability that a box will fail to meet the guaranteed quality.

Let X represents the number of defective pins produced.

Probability for producing one defective item is p = %

Products are sold in packets of 100 and hence n= 100

Therefore A =np= 100x0.05 =5

It follows Poisson distribution and hence P[X = x]: , x=012,.......

The manufacturer gives a guarantee that a packet may contain maximum
10defectives.

If a box contain more than 10 defective items, then the box will fail to meet the
guarantee.

Probability of a packet containing more than 10 defective

P[X >10] = P[ X =11, 12, 13, ........ ]
=1—P[XS10]=1—P[X=0,1,2, ........... ,10]
87550 e7551 e75510
=1 - F o
{0' 1! 10 ! }
1 2 10
:1—e‘5{1+—+i+ .......... S }
21 10 !

Geometric Distribution

A random variable X is said to follow geometric distribution if its probability mass function is
P[X =x]=pg*, x=012,........ (or) P[X=x]=pg** x=123,.....

e Itgives probability of first success after x failures.

Example 1. Find the moment generating function and hence find the mean, variance of
geometric distribution.

The p.m.f of geometric distribution is P[X = X] = qx‘l p,x=2123,........

My (t) = E[e'"]
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Mean E[X]=M]

w0 - |

var(x)=E[x* |- (E[x])

1 1 x

X

(ae)

1+ (qe')+(q e‘)1+ (q et)2+

1 - q e ]71
1
1 - q e
o P —ae) _ | _pe P
A ey o P

(1—qe‘)2 pe' — pet2(1—qe‘)(—qet)

L-qe') ]o

) p+29 1 p+29-1 q
= 2 _F: 2 =7

P P p

p’+2p’q  p+2q
pt  p?

Example 2. State and prove memoryless property of Geometric Distribution

Statement: P(M >m+n/X >m)= P(X >n)

Here X follows Geometric Distribution and hence

P[X =x]=q* "' p,x= 123, ......

P[X>n] = 3 P(x) P[X >m+n/X >m] - P[X>m+nn X>m |
x=n+1 P[X >m]
= i q* 'p _ P[X>m+n ]
x=nil P X>m ]
— p[qn+qn+l+qn+2+ ..... ] qm+n
= pq”[1+q+q2+q3+ ..... ] g
_ = q
= p o [L-q]”
= P[X>n]
= pg'p’
= qn
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Example 3. A dieis castuntil 6 appears. What is the probability that it must cast more
than five times.

Let X represents the number of tosses required to get the first 6.

Probability of getting 6 is p =é and hence q=1-p =%

{6 OE O O EE)
- () (3 (3 0] -o-omm-aam

Example 4. A trainee soldier shoots a target in an independent fashion. If the probability
that the target is shot on any one shot is 0.8. What is the probability that the target would
be first hit at the 6t attempt?. What is the probability that it takes less than 5 shots?

Let X represents the number of shots required to hit the target first.
Probability of hitting the targetis p=0.8 and hence q=1-p=0.2
Also P[X =x]=q*"p = (0.8) (0.2)"" ,x=1.2,........
(i) Probability of hitting the target on 6t attempt

P[X =6]= (0.8) (0.2)°* = (0.8) (0.2)° = 0.00026

(ii) Probability of hitting the target in less than 5 attempt

P[X<5] = P[X=1]+P[X=2]+P[X =3]+P[X =4]
= (0.8)(0.2) + (0.8)(0.2) +(0.8)(0.2)+ (0.8)(0.2)

= (08){1+(02) +(0.2)°+ (02) |= 0.9984
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Example 5. A candidate is applying for driving license has the probability of 0.8 in passing
the road test in a given trial. What is the probability that he will pass the test (i) on the
fourth trial (ii) in less than four trials.

Let X represents the number of trails required to get the first success.
Probability of getting the licenseis p=0.8 and hence q=1-p=0.2
Also P[X =x]=q*'p = (0.8) (0.2)"" ,x=12,.......
(i) Probability of getting the license in the 4t trial

P[X =4]= (0.8) (0.2)"™" = (0.8) (0.2)° = 0.0064
(ii) Probability of hitting the target in less than 4 attempt

P[X<4] = P[X =1]+P[X =2]+ P[X =3]

(0.8)(0.2) + (0.8)(0.2) +(0.8)(0.2)

(0.8){1+(02) +(02) |= 0.992

Uniform Distribution
Let X be auniform distribution defined in the interval (a, b) then its probability density

function is of the form f(x)= bi’ a<x<b.

Example 1. Find the value of ‘a’ if X follows uniform distribution in the interval (a, 9)
and P(3< X <5):$.
Given X follows uniform distribution in the interval (a,9) and hence

1
f(x)=—, 9
(x) g5 a<X<

Also given that

P[3<X<5]=%

5

If(x) dx:g

2 7

5

I ! dx:g

; 9 — a 7

1 5 2

9 - a [X]3_7
2 _2
9 — a 7
a =2
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Example 2. Find the moment generating function and mean, variance of uniform
distribution where X ~U(a,b).

Here X follows uniform distributionin (a, b) and hence f(x)= bi ,a<x<b
-a
The moment generating function is given by

M (t) = El.etx J

U (x) dx

Il
D e T
D

Var(x):E[Xz]_[E(X)]z:a2+b32+ab_(a4;rb)2 _ (aizb)z

Example 3. Find the m.g.f of uniform distribution in the interval (0,1). Also find the
mean, variance of it.

Here X follows uniform distributionin (0,1) and hence f (X) = i 0<x<l

The moment generating function is given by

38



0 0
1 1
= _[ X dx = j x?  dx

0 0
-[%] -[%]
2 0 3 0

_ 1 _ 1

2 3

var(x) = E[x*] - [ E(X) ] = % - % =

Example 4. Electric trains in a route run every half an hour. Find the probability thata
passenger entering the station will have to wait (i) at least 20 minutes (ii) less than 10

minutes.

Electric trains in a route run every half an hour. Therefore it follows uniform distribution

with pdf f(x):%, 0 <x<30

|
l | l
X =0 X =30 X = 60

Probability for a passenger to wait at least 20 minutes. It happens if he arrives in between
0 to 10 minutes.

? 1% 1 10 1
P[O<X<10]:£ f(x)dx=—.([ dx :—[X]30=%=§

Probability for a passenger to wait less than 10 minutes. It happens if he arrives in
between 20 to 30 minutes.

39



30 1 30 1 10
=20

P[20 <X <30]=[ f(x)dx=_[ dx =

1 _1
5 30 5, 30 3

Example 5. Arandom variable X has an uniform over the interval (-3, 3). Compute

i. P[X <2] ii. P[[X|<2] iii Find k suchthat P[X >k]=%

Here X follows uniformin the interval (-3, 3) and hence f(x)= ﬁ -3<x<3

+

2 12 1 , 5

P[ Xx<2]= P[—3<X<2]=£f(x)dx:g£dx:g[x]szg
‘ 1% 1 » 4 2
Pl [ X|<2]|=P| -2<X<2]|= f == I T _“
[| |<] [-2<X<2] _J; (x)dx 6_J;dx 6[X]72 53

Given P[X >k]=%

P[ X >k]=%

P[k <x <3]=

Wl

1roqs 1
E[X]k_3
-k

x
Il
R Wl

Example 6. Let X be a uniform random variable with mean 1 and variance % Find

P[ X<0].

We know that, if X follows uniform distribution in (a, b), then

2
Mean:—a;rb , Var _b-a)

12
Given mean =1 and variance :%.
2
Therefore 1 = a_+b and ﬂ = (b—a)
2 3 12
ie. a+b=2...) and (b-a ) =16 ie.b-—a=4 ... (ii )



Solving (i) and (ii), weget a=-1 and b=3

Therefore f(x) = 1 . 1 -1<x<3
b - a 4
0 1 0 1 . 1
P[ X<0]= F>[—1<X<o]:_jl f(x)olx:z_jl dx = [x]% =

Exponential Distribution

A continuous random variable X is said to have exponential distribution with parameter A >0 if
Its probability density function is of the form f (x) = e ™, 0<x<o

Example 1. Find the moment generating function, mean, variance of exponential
distribution.

The moment generating function of exponential distribution is given by

My (t) = E[etx ]

0

= J' e f(x) dx

Il
Y

Oy 8
D
L
~
N
=
o
x

ey
(2-1)
ML (t) = (A-1)(0) - 2&(—1) _ A
(4-1) (A-t)
M;’(t) _ (/1_'[)2(0) - 12(4/1—0(—1) _ 21 3
(2-t) (A-1)
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Example 2. State and prove memoryless property of exponential distribution.

If X isexponentially distributed with parameter A, then for any two positive integers m and n,

P[X>m+n/ X>m]=P[X>n]

P[X>n] = P[n <X <]

P[X>m+n/ X>m] = P[X>2[+Xn (r;]X>m]
>

P[X>m+n]
P[X>m]

e—(m+n)

= P[X>n]
Example 3. Find P[X > 10] if the probability density function of X is f(x) =e ", x>0.
Given f(x)=e *,x>0.
P[ X>10] = P[10 < X < o]

:I) f(x) dx
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Example 4. Suppose that during the rainy season in an island, the length of the shower has
an exponential distribution with average 2 minutes. Find the probability that the shower
will be there for more than 3 minutes. If the shower has already lasted for 2 minutes, what
is the probability that it will last for al least 1 more minute.

Let X represents the length of the shower in minutes and it follows exponential

distribution with mean 2. But exponential distribution has mean '

Therefore 1 =2 = A= 1
A 2

1
The pdf of exponential distribution is f(x)=le ** = %e 2 ,0<x<mo

(i) Probability that the shower lasts more than 3 minutes

P[X >3] =P[3<X <]
:.[ f(x) dx
3
-1 I e 2 dx
2
3
_Lfe?
=5 1
2 Js
3
p— e_E
(iii)  Probability that the shower will last at least one minute, given that it had lasted 2
Minutes
P[X>3/ X>2]=P[ X>1]
= P[ 1 <X« oo]

= ]j f(x) dx
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N |+~

Il
N |-
3 P38
9]
|
=
8

Example 5. The life of alamp (in 1000’s of hours) is exponentially distributed with
parameter A = % . Find (i) the probability that the lamp will last longer than its mean life

of 3000 hours.
(ii) the probability that the lamp will last for another 1000 hours given that it is operating
after 2500 hours.

Let X represents the life of the bulb (in 1000 hours) and it follows exponential
distribution with parameter A = % Therefore its average life is 3000 hours.
1 -5«
The pdf of exponential distribution is f (X) =le ™ = ge 3 0<x<oo
(i) Probability that the life of the bulb lasts more than its average life3000 hours.

P[X >3] =P[3<X <]

Il
we—38
—_
—~
x
N2
o
>

:lj' e 3 dx
3
3
_1fe®
= 3| 1
3 s
= et

(ii) Probability that the shower will last more than 1000 hours, given that it had already
lasted 2500 hours

P[ X>35/ X >25] =P[ X>1], by memoryless property

:P[1<X<oo]

Il
B — 8

f(x) dx
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Example 6. The daily consumption of milk in a city in excess of 20,000 litres is
exponentially distributed. The average excess in consumption of milk is 3,000 litres. The
city has a daily stock of 35,000 litres. What is the probability that a day is selected atrandom

and the stock is insufficient for that day.

Let X be the random variable of daily consumption of milk in excess of 20,000 litres.

Now X follows exponential distribution with mean 3000 litres

But exponential distribution has mean l Therefore 1 =3000 = A= L
A A 3000

1

The pdf of exponential distribution is f(x) =le ™ = ﬁe 7mx, 0< X<

Let Y be the daily consumption of milk. Then X =Y —20000

Probability for the stock is insufficient happens if the daily consumption is more than
the stock 35000 litres.

P[Y >35000] = P[X +20000 > 35000 ]
= P[ X >15000 ]
= P[ 15000 < X <o |

= [ f(x)dx
15000
) 1
-1 e 300"
3000 15000
l 0
1 | e %0
3000 | 1
3000 15000
R S P
3000 1
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Normal Distribution

Example 1. If X isanormal variate with ;=30 and o =5, find
(i) P(26 < X <40)

(i) P(X =45) (i) P(| X-30]=25)

Given X isanormal variate with =30 and o =5. Then Z= X-p _X-30

<Z<—
5 5

(i) P(26 <X <40) = pl:x -30 X _30}

_ P{ZG—SO <7< 40—30}
5 5

=P[-08<Z<2]
- P[0<Z<08]+P[0<Z <2

= 0.2881 + 0.4772 2=-08 20 22

= 0.7653

(i) P(X=45) = P[ 7> X ;30} /"
_ P{ . 45—30} \
=pP[ >3] A N
= 05-P[0<Z<3] 7=0) =3
— 0.5 - 0.4987

0.0013
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(i) P(|x-30/>5)=1-P(|X-30<5)

=1-P[-5<X-30<5] T
=1- P[25<X <35] pe
_ 1o p X0 70 X—30} e
. 5 5 e AN
o, p[-30_, _35-30
5 5

= 1-P[-1<Z<1]
1-2P[0<Z<1]
1-2(0.3413)

= 0.3174

Example 2. A certain type of storage battery lasts on the average 3 years with standard
deviation 0.5 year. Assuming that the battery lives are normally distributed, find the
probability that the given battery will last less than 2.3 years.

Given X isanormal variate with u=3 and ¢=0.5 Then Z= 2 )(0—_53
o .
To find the probability that the battery will last less than 2.3 years
P[X<23]= P{Z X _3}
] ™
_pl 7 2.3-3 e "

0.5 yr e
=P[ Z <-14] ye
=05-P[0<Z <14] Vs N
= 0.5-0.4192
= 0.0808 2=-14 270

Example 3. The average percentage of marks of candidates in an examination is 42 with a
standard deviation of 10 .If the minimum mark for pass is 50% and 1000 candidates appear
for the examination, how many candidates can be expected to get the pass mark if the marks

follow normal distribution? If it is required, that double the number of the candidates
should pass, What should be the minimum mark for pass?

Let X denote the marks of the candidates. Given x =42, c=10.
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X—pu X-42
o 10

Let z=

Probability to get pass marks = P(X > 50)

:P(2250_42j /f\

10 )
/'//

P(Z>08) \
=[05-P(0<Z<08)]
—[0.5-0.2881]

70 z=08
=0.2119 )

Therefore expected number of students to get pass marks =1000x P(X > 50)

=1000x0.2119
=212

To double the number of passed students i.e. 424. Then P(Z >z)=0.424
P(O <Z< Z) =0.5-0.424=0.076

From the normal table, z=0.19

0.19= 20X

xU 48

Therefore the pass mark should be nearly 48

Example 4. A production line manufactures 1000 ohm resistors that have 10% tolerance.
Let X denotes the resistance of resistor. Assuming that X is a normal random variable
with mean 1000 and variance 2500, find the probability that a resistor picked at random
will be rejected.

Given that the resistance of resistor X is a normal random variable with mean x#=1000 and

X —1000

J2500

10000hm resistor is produced. Since the tolerance limit is 10%, the resistor is accepted if the

variance o? = 2500 . Therefore Z =

resistance capacity is 900ohm to 1100o0hm.

Therefore probability for a resistor to be accepted is P(9OO <X< 1100) .

Therefore probability for a resistor to be rejected is =1— P(900 <X <1100)
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<7<
/2500 /2500
=1-P(-2<Z< 2)

=1_P[goo—looo . 1100-1000}

=1-2P(0<Z<2)

=1-2x(0.4772)

z=-2 z=0 =2

=0.0456

Example 5. If X is N(3 4),find k so that P(X —3>k)=0.05

Given X isanormal variate with
=3, o=2.

Then Z:M — X__3
o 2

==k/2 z=0 7=k/

Given that
P[] X -3>k ] =005
1 - P[|X -3 <k] =005
P[] X -3 <k] =1- 005
P[ -k<X -3 <k] =095
P[ -k<X -3 <k] = 09
P[ 3 k<X <k+3] = 095

= XT_3<Z <X—_3}:o.95

P 3-k-3 < Z < k+3_3} = 095
i 2 2

P _—k<z <5}:0.95
2 2

ZP{ 0 <Z <g}= 0.95
k

P{ 0 <Z <E} = 0475

g =1.96 {from the normal table}

ie. k = 392
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Example 6. Given that X is distributed normally with P(X <45)=0.31 and P(X <64)=0.08.

Find the mean and standard deviation of the distribution.

Given P(X <45)=0.31.
Therefore P(45< X <0)=0.19

The value of z corresponds to the area 0.19 = 0.5

. 45— u _ 05 031 0.19

o

45— 1=-050 ————(l)

X=45 X=0

Given P(X <64)=0.08.
Therefore P(64 < X <0)=0.42 '

The value of z corresponds to the area 0.42 = 1.4

S B
(o2
0.08) 042
64— pu=-140 ————(2)
X=64 =0

Solving (1) and (2) mean=50, SD=10.
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Exercise

1. If P(A)=0.35, P(B)=0.45,find P(Amg) where A and B are mutually exclusive events.
2. If P(A)=03, P(B)=0.7 and P(AnB)=0.1 find P(AUB).
3. If Aand B are mutually exclusive events with P(A)=0.31, P(B)=0.17, find P(AUB).

4. What is the probability of drawing one white ball from a bag containing 6 red 8 black and 10
yellow balls?

5. [If two dice are tossed simultaneously what is the probability of getting 7 as the sum of the
resultant faces?

6. If four coins are tossed simultaneously what is the probability of getting exactly 3 heads?

7. When a pair of balanced dice are rolled what is the probability of getting 2 or 12.

8. A fair coin is tossed 3 times. What is the probability of getting exactly two tails?

9. Letan urn contains 4 tickets numbered 1, 2, 3, 4 and another urn contains 6 tickets numbered
2,4,6,7,8,9. Ifone of the two urns is chosen at random and a ticket is drawn at random from
the chosen urn, find the probabilities that the ticket drawn bears the number 1 or 9

10. In a bolt factory, machines A, B and C manufacture 25%, 35% and 40% respectively of the

total output. The probability of a defective product are respectively 5, 4, 2 percent from the three
plants. A bolt is chosen at random from a days production and found to be defective. What is the
probability that it was manufactured by C?

11. A certain firm has plants A, B and C producing 35 %, 15 % and 50 % respectively of the

total output. The probability of a non defective product are respectively 0.75, 0.95 and 0.85 from
three plants. A customer receives a defective product. What is the probability that it came from
plant C?.

12. Suppose that coloured balls are distributed in three indistinguishable boxes as follows:

Box 1 Box 2 Box 3
Red 2 4 3
White 3 1 4
Blue 5 3 5

A box is selected at random from which a ball is selected at random and it is observed to be red.
What is the probability that the box 3 was selected?

13. Three machines A, B and C of equal capacities are producing washers. The probabilities that

these machines produce defective washers are 0.15, 0.24 and 0.18. A washer taken at random from
a days production was found to be defective. Find the probability that it was produced by C.

14. If two fair dice are thrown, find the expectation of the sum of outcomes and also find the
variance.
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15. There are four different choices available to the customer who wants to buy a transistor set.
The first type costs Rs. 400, the second type Rs. 340, the third type Rs. 440 and the fourth type

Rs. 380. The probability that the customer will buy these types is % , % , % and % respectively.

The retailer of these transistors gets a commission 20 %, 12 % , 25 % and 15 % for these sets
respectively. What is the expected commission of the retailer ?

16. For scores X on a admission aptitude test , the mean E(X)=60 and V(X )=40. Find the

) X -60
mean and variance of )
X
) ) . —:x=1234
17. Let X be a discrete random variable with p.m.f P(X =x)=<10 :
0 otherwise

Compute P( X <3) and E(éj

a(l+x?),2<x<5

18. A continuous random variable has the pdf given by f(x)= { -
0 otherwise

Find o and P(X <4).

0, x<0
X2, 0<x<t
19. The DF of a continuous random variable X is given by F(x)= 2

1—3(3—x)2, 1ox<s
25 2
1, x=>3

Find the pdf of X and evaluate P(| X |<1) and P(:—l; <X< 4} using both pdf and cdf.

X, 0O<xx«l
20. Find the MGF of the random variable X having the pdf f(x)=2—x,1<x<2.
0, 2<X<ow

21. 6 dice are thrown 729 times. How many times do you expect at least three dice to show a

five (or) a six?

22. The number of monthly breakdown of a computer is a random variable having a Poisson
distribution with mean equal to 1.8. Find the probability that this computer will function for a
month (i) without a breakdown (ii) with only one breakdown.

23. If the probability that an applicant for a driver’s license will pass the road test on any given trail is
0.8, what is the probability that he will finally pass the test (i) on the 4™ trial (ii) in fewer than 4 trails?

24. Let X be a uniformly distributed random variable over [—5, —5]. Determine (i)P(X <£2)
(i) P(|X]>2)
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ANSWERS

1. P(A) 2.09 3.048 4.0 5.0.1666 6.0.25 7.0.0555 8.0.1111 9. 0.2083

10. 0.2318 11. 0.4411 12. 0.1132 13. 0.3157 14. M=7,V=5.8 15. 75.22

16. M=0, V=0.5 17. 3,§ 18. i,ﬁ 19. f(0="Fx ,5,§ 20. iz(et_l)2
10° 2 42" 63 dx 25" 9 t
21. 729xP(X 23)=233  22. 0.16, 0.29, 0.83 23. 0.0064, 0.992  24. %,%
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Unit-II Two Dimensional Random Variables

Two Dimensional Discrete Random Variable

The probability mass function of a two dimensional discrete random variable taking the values
Xor X, X, and Yy, Y;, Y, istabulated as follows:

. Yo Vi Y,
%o Poo Por Po
! P1o Py P
X, P2 P2y P,

Hereall p; 20 and Zz p; =1. Notation: P[X =%,,Y =Y,]= P

Necessary Formulae:

Marginal distribution of X
P[X = Xo]: Poo + Pos  Poy
P[X = Xl]: Pio  Puy t Pr

P[X = Xz]: Pao + Pa1+ Py

Marginal distribution of Y
P[Y = YO]: Poo 1 Pip + Py
P[Y = Y1]: Port Py + P2

P[Y = Y2]: Poz + Pi2 + P2y

Conditional distribution of X given
Y=Y,
P[X =%,Y =Y,]
P[X=x,/Y=Yy,] = 0
=5l =x) P[Y =]
_ Poo
P[Y =y,]
P[X =X,Y = yo]
PIX=x/Y=y,| =
X=nlv = P[Y =]
_ Pio
P[Y = yo]

Conditional distribution of Y given
X =x

PIY =y X =x] = T =YorX =]

PIX =x]

P
P[X =x]

P[Y =y, X =x]
P[X =x,]
Py

P[X =x,]

PlY=y,/X=x] =

https://doi.org/10.5281/zenodo.15090192
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PIX =X,,Y = PIY =y, X =
P[X =x,/Y =y,] = [P[Yz_y]yo] P[Y=y,/X=x] = [P[:(lz_x]xl]
—Jo - M
— p20 p12
P[Y =y,] P[X =x]

If X and Y are independent, then P[X =X,Y = ij:P[X =Xi]><P[Y = ij forall i, j
Meanof X : E[X]=)] xP[X =x] Vi

E[XY]=)" > xyP(x,y) vxy

Meanof Y : E[Y]zz yP[Yzyj] Vi

Conditional expectation of X given Y =; : E[X 1Y = yj]: Z X; P[X =x1Y= yj]Vi

Conditional expectation of Y given X =X; : E[Y /| X = Xi]zz Y; P[Y =y, X= Xi]Vj

P[X<x ,Y<y,] = P[X=%,X%,Y=Y,, ]

P[X= X, Y=Y,] + P[X=% ,Y=y]+
P[X=x,Y=y] + P[X=x,Y=y]

Example 1. The joint probability function of the random variables (X ,Y) is given by
P(X.Y)=k(2x+3y), x=012; y=12,3
i.
ii.
iii.

Find the marginal distributions
Find the probability distribution of X +Y
Find all the conditional distribution of X given Y

The joint probability distribution function of (X ,Y) is given below:

Y 1 2 3
X
0 3k 6k 9k
1 5k 8k 11k
2 7k 10k 13k

To find k: we know that ZZ P(x,y) =1
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k=1
72
Marginal distribution of X .
18
P[X =0]=3k +6k +9k =18k = -
24

P[X =1] =5k +8k +11k = 24k = o

P[X =2]=7k +10k +13k = 30k = %

Marginal distribution of Y

P[Y =1] =3k +5k + 7k =15k = %
24
P[Y = 2] =6k +8k +10k = 24k = o

P[Y =3]=9k +11k +13k = 33k = %

Probability distribution of X +Y: Here X +Y takesthe values 1,2,3,4,5
Possible (0,1) (1,1) or (0,3) or (2,2) or (2,3)
combination (0,2) (1,2) or (1,3)
(2,1)
X+Y 1 2 3 4 5
P(X+Y) 3k 5k+6kk 9k +8k +7k 10k +11k 13k
3 =11k =24k =21k 13
72 11 _24 _ 2 72
~72 72 72
Conditional distribution of X given Y =1: Conditional distribution of X given Y = 2:
P[X:X/Yzl] P[sz/Y:Z]
Pl X=0,Y=2
p[x —orv 2] = 7 ]
P[ X=0,Y=1] PlY =2]
P[ X=0/Y=1] =
PlY=1] _ 6k _ 6
24k 24
3k 3
== == P[ X=1,Y=2
15k 15 p[x —1/v —2] - I ]
P[ X =1, Y=1] PlY=2]
P[ X=1/Y=1]= Il B
[ | P[Y=1] _ 8 _ 8
24Kk 24
5k 5
_ Sk _ 5 P[ X=2,Y=2]
PIX=2/Y=2| =
15k 15 [ ] PV =2
10k 10
Pl X=2,Y=1 = — = —
P[Y =1]
_ Ik _ T
15k 15
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Conditional distribution of X given Y =3: P[X =x/Y =3]

P[X:WY:3]:P[X:O’Y:3] P[X:UY:B]zp[X:lNZB]
P[Y =3 ] Plv =3 ]
_ %k _ 9 I
3%k 33 3% 33
P[X:2Nz3]=P[X:2N:3]
P[Y =3 |
_ k13
3%k 33

The two dimensional random variable (X ,Y) has the joint density function

X+ 2y

f(x,y)= ,x=01,2; y=012.

Find the marginal distributions and conditional distributions.

To find marginal distributions:

Y
« 0 1 2 P(X =x)
0 0 1/27 2/27 3/27
1 2/27 3/27 4/27 9/27
2 4/27 5/27 6/27 15/27
P(Y=Y) | 6/27 9/27 12/27

f(x,
The conditional distribution of Y given X =x is given by f(y/ X)= f((x>)/)
Y
0 1 2
X
0 0 1/3 2/3
1 2/9 3/9 4/9
2 4/15 5/15 6/15
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The conditional distribution of X given Y =y isgivenby f(x/y)=

f(y)
Y
0 1 2
X
0 0 1/9 2/12
1 2/6 3/9 4/12
2 4/6 5/9 6/12

Example . Three balls are drawn at random without replacement from a box containing 2 white,
3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number

of red balls drawn, find the joint probability distribution of ( X,Y).
Here X takes the values 0, 1, 2 and values of Y are 0, 1, 2, 3. The joint p.m.f of (X ,Y) is

required. There are 2w, 3R, 4B balls and in total 9 balls.

The probabilities when three balls are drawn at a time without replacement are given below:

P(Xx=0Y=0)=o -2 | p(x=1Y=0)=222% 1 px_py-g-Zt_1
9C, 21 9C, 7 9C, 21
(WO, RO, B3) (W1, RO, B2) (W2, RO, Bl)
P(X=0,Y=1)=—3Cl'4C2 P(X :1,Y=1)=—2C1'3C1'4C1 F>(X=2,Y=1)=—2C2'3C1
9C, 9C, 9C,
_3 _2 _1
14 7 - 28
(WO, RL, B2) (W1, RL, BI) (W2, RL, BO)
P(xzo,Y:z):3Cz-4cl:1 P(X :1,Y=2)=w=i P(X=2Y=2)=0
9C, 7 9C, 14
(W2, R2, BO)
(WO, R2, Bl) (W1, R2, BO)
3
(W1, R3, BO) (W2, R3, BO)
(WO, R3, BO)

Therefore the joint p.m.f is
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X 0 1 2
Y
0 m 7 21
! 7 7 2
: g 1 :
3 i 0 0
3. X and Y are independent random variables with variance 2 and 3.

Find the variance of 3X +4Y.

Given Var(X)=2 and Var(Y)=3

We know Var (X +Y) = Var(X)+Var (Y)+2Cov(X,Y) and Var (aX)=a’ var(X)
Since X and Y are independent then Cov(X,Y) =0

Var (3X+4Y) = 9var(X) + 16Var(Y)=9(2) + 16(3) =18 + 48 = 66

Two Dimensional Continuous Random Variable

Afunction f(X,y) issaid to be joint pdfif (i)f(x,y)>0 (ii)'f j f(x,y)dxdy =1

—00 —00

Marginal distribution of X Marginal distribution of Y
(0= Flcy)oy )= ] fuy)x
Conditional density function of X given Y Conditional density function of Y given X
f(x/y)= fxy) f(y/x)= f(x.y)

f(y) f(x)

b b
Pla<X <b]= [ f(x)dx Pla<y <b]= [ f(y)dy
a \ . a
Pla<X <b,c<Y<d]= [ [ f(xy)dy dx
Conditional mean of X give Y =a Conditional mean of Y given X =a
E[X/Y =a]= j x f(x/y),, dx E[y/X =a]= _[ y f(y/x),_, dy

—00 —00
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Properties of joint distribution function
(i) O<F (X, y) <1 (i) F (X, y) is non decreasing function

(i) P(a<x<b,Y<y)=F(by)-F(ay) (iv) P(X<x,a<y<b)=F(x,b)-F(xa)
(v) P(a<X<b,c<Y<d)=F(b,d)-F(ad)-F(bc)+F(ac)
(vi) F(X,—oo):F(—oo,y)zo, F(oo,oo):l

2

F(x,y)

(vii) At the point of continuity of f(X,y), f(x,y)= aiay

Example 1. If X and Y are two random variables having joint density function
1
—(6—-Xx—-Vy);0<x<2,2<y<4
f(xy)= 8( ) y<%,
0 ;  otherwise

Find (i) P(X<LY<3) (i) P(X<1/Y<3) (iii)) P(X+Y<3)

P[X<1,Y<3] =P

1 1 3 1 1 y2 8
= = 6-x—-y)dydx = = (Gy—xy——] dx
o | [ emondoe =g [y
1
-2 (18—3x—g)—(12—2x—2) dx
8 ¢ 2
1 ¢ (7 1 (7 x?
= — _— d = — —_ -
: | 7] & -3 (ZX ZJO
_ E(Z_lj _ 3
~8l2 2) 8
Marginal density function of Y : PlY<3] = P[ 2 <Y<3 ]
w 3
f(y) = [ f(xy) dx = [ f(y) dy
e 2
1 3 1 T (11
- 2 [ (6 —x-y) =5 | [E‘dey
0 2
1 6 NG ] — (E‘ _y_ZT
= g ( X —?—yX]O 2 2 )

Il
|~
7\
|
N |-
|

yj =
HED

Wlw Wik Wk o

oo
N
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P[X <1/Y <3]=P[0<X <1/ 2<Y <3]= P[O<P)[(2<1;{2<3\](<3] - gxgzl
<Y <
v=4

Xx+ty=<3

Il
| =
O ey
VY
D
—~
w
|
>
N—"
|
>
~—
w
|
>
N—
|
N
N~
|
~—~~
H
N
|
N
>
|
N
N—
o
>

:% i(g_x) (G_X—%(S—x)j—loJer dx

1 2
_1 j18—3x—9+3—x—6x+x2+3—X—X——10+2x dx
8 1 2 2 2

2

2
X
Example. The joint p.d.f ofarandom variable (X,Y) is f(X, y)=xy2+E, 0<x<2, 0<y<1

Find (i) P(X<Y) (i) P(X<1) (iii) P(Y <%) (iv) P[X >11Y <%)
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Marginal pd.f of X

Marginal pd.f of Y

f(x)

0

'f f(xy) dx

1

P(1<X<2,0<Y <Ej

Ot O |

4

_10
48

f(x,y) dy dx

2

X
xy? +— dy dx
y 3 y

1 1

63
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P(X >1/Y <%J:P(1< X<2/0<Y <%)

P(1<X<2,0<Y <;j

P[O<Y <1j
2

10 4
_X_
48 1

>
6

Example 2. Ifthe joint probability density function of (X ,Y) is given by
f(x,y)=2 0<x<y<l. Find i. Marginal density functionof X and Y ii. Conditional

density f(x,y) iii. Conditional mean of X given Y =2.

Marginal density function of X Marginal density function of Y
1 y
() =] fxy)dy f(y) = [ fxy)adx

X 0
1 y

:J 2 dy :I 2 dx
X 0

- 2y} - 2[s)

=2(1-x) =2y

Conditional density function of X given Y

_fly) 2
)= T2) 2

Conditional mean of X given Y =2

1
E[X/Y=2]:J x f(x/y),, dx
0



Example . If the joint probability distribution function of a two dimensional random variable
(1-e™)(1-e7), x>0, y>0

(X,Y) is given by F(X,y)
0 , otherwise

. Find the marginal densities of X and

Y . Are X and Y independent? Find P(l< X <3 1<Y <2).

2

Given the cumulative distribution function F(X,y). Hence The joint pd.f is f (X, y):ai F(x,Y)

" (1-e7)(1-e”)

Fx y)zﬁxﬁy

:(e‘x)(e‘y), x>0,y>0

The marginal density function of X is

o0

L ()= f(xy)dy

= T e ‘e’ dy
0

The marginal density function of Y is

0

f(y)=] f(xy)dx

= j e e dx
0

- C— N

D

*
ml

<
o
<

o

X



X(x—y); 0<x<2, —Xx<y<X

Example . Given the joint pd.f of X and Y is fey (X y)= c 0 heru
’ ; otherwise

(1) Evaluate C  (2) Find marginal pdf of X (3) Find the conditional density of Y /X

By definition of pd.f,we have j j f(x,y)dy dx =1

—00 —00

Cj% I x> —xy dy dx =1

0 —x

2 X
2C J. j x* dy dx =1 {applying odd/even integral property}

0 0

ZCJZ' (xzy): dx =1

0

2
ZC_[ x3dx =1
0

42
cl X 21
40

8C=1

c-1
8

Marginal distribution of X is f, (x)= I f(x,y) dy

—00

X

1
fx(X):gj. x* —xy dy

—X

ool N

J x* dy {applying odd/even integral property}
0

(<y),

00N

3
:X—, O<x<?2
4

Conditional density function of Y /X is

1X(X y)
X, Q "\t 1
(X>),) -7 x° B ZXZ(X_y)’ TSR

4

f
fY/X(y/X) = f(
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Example 3. The joint probability density function of the random variables (X ,Y) is given by

f(x,y)= kxye’(xz*yz), x>0, y>0. Find the value of k and also prove that X and Y are

independent.

Since f(X, y) isajoint p.d.f,we have j I kxyef(xzwz)dxdy:l
0 0

kT xe ™™ dx T ye V' dy =1
0

0

k 2 \P (2 \* _
a7 (e7), =1
k
2 (0-1)(0-1)=1
k=4
Marginal density function of X Marginal density function of Y
f (X) :I 4xye_(xz+y2)dy fY(y):I 4xye_(xz+y2) dx
0 0
=4xe™ [ ye ' dy =4ye™ [ xe dx
0 0
4 2 < 2 4 2 < 2
= xe .([eyd(yz) =>ve’ Jo'e d(x*)
= —2X€7X2 = —2ye’y2

Since f(x,y)=f,(X)xf,(y), X and Y are independent.

Definition: The correlation between two random variables X and Y is defined as

o0 o0

E(XY):J' J. xy f(x y) dx dy.

—0  —®

Two random variables X and Y are uncorrelated if E(XY)=E(X)E(Y)
Two random variables X and Y are orthogonal if E(XY)=0
Covariance between X and Y is Cov(X,Y)=E(XY)-E(X)E(Y)

Cov(X,Y)

Oy 'Oy

Correlation coefficient between X and Y is r=

Correlation coefficient lies between —1 and 1.

If two variables are independent, then they are uncorrelated and covariance is zero. But
the converse need not be true.
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Example . The joint probability density function of the random variables (X ,Y) is
f(x,y)=3(x+y), 0<x<1 0<y<1 x+y<1. Find COV(X,Y)-

Marginal density function of X and Y 01
()= floy)dy xty=1
:3_[ X+y dy
y? X (0,0) (1,0)
At
:3(x(1 X)+= (1 x))
:§ 1—x? ) 0<x<1
2
Similarly fY(y)=J. f(x,y) dx =g(1— yz), 0<y<1
E(X):J. xf (x) dx E(XY :j j xyf (x,y) dx
l 7001 7:.:(
Ix =3.[ j xy x+y dydx
20 0 0
_3(x*_x Py )
_2(2 4j _3£ 2 3 ), o
3 1 l 1 2 2 3
== =--= X“(1-x X(1-x
2(2 4) =3[ (2)+(3)]dx
3 0
= — 1 2 4 3 3 2 4
8 =3J- X°+ X —2X +x+3x —-3X°—X ]dx
) 2 3

Similarly E(Y)= g

2(3 5 2)32 4 3
11 1 1) 1(1 3 3 1

=3|=|=4+=-—=|+=| =F+——=—=
12l3 5 2) 312 4 35

_1

10

1[x3 X x“j 1[x2 3x*  3x ﬂl
It R SR SR R Y S S S
0

y=0



Example: Two random variables X and Y  have joint density function

f(xy)=x +—y 0<x<1,0<y<2. Are X and Y independent? Find the conditional density

functions and check whether they are valid.

Marginal density function of X Marginal density function of Y
fx(x)=j f(x,y) dy fx(x)=j f(x,y) dx
i X L X
= | X2+ dy = x*+ 22 dx
0 3 0 3
2 7? I I
=| x2y+ 2 | XL XY
6 | 3 6 |
_ox2+2x 0<x<1 LY o<cy<o
3 3 6

Since f, (x)#= f,(y), X and Y are notindependent.

Conditional density of X given Y Conditional density of Y given X
f f
£ (X 1y = fer ey f, (1 %) = fe Y
f, () fx (x)
X2+ x2+ Y
3 _ 3
1.y 23 + 2 x
3 6 3
_FHY ox<t 0<y<2

M 0<X<1 O<y<2
2+y 6x+2’

Validity of conditional densities

h © BX*+2xy ‘ S 3x+y
!fX(X/Y)dx=£ ey b[fY(Y/X)dyzl ¢
3 2, Tt 272
_ 1 {GX +2x y} _ 1 [3xy+y—}
2+y| 3 2 | 6x+2 2 |,
1
2 = 6X+2
2+y[ +y] 6x+2[ xr ]
-1 =

Hence the conditional densities are valid.
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Example . Two random variables X and Y are defined as Y =4X +9. Find the correlation
coefficient between X and Y .

E(Y)=E(4X +9)=4E(X)+9 E(X)E(Y)=4[E(X)] +9E(X)
E(XY)=E[X(4X +9)]=E[(4X?+9X ) | =4E(X?)+9E(X)

E(Y?)=E(4X +9)° =E(16X*+81+72X ) =16E(X*)+72E (X )+81

[E(V)] =[4E(x)+9] =16[E(X)] +8L+72E(X)

ot ~E(*)-[E(Y)]

X?)+72E(X)+81-16[ E(X)] ~81-72E(X)

I
[N
(2]
m

—_

6E(X?)-16[E(X)]

E(XY)-E(X)E(Y)=4E(X?)+9E(X)-4[E(X)] ~9E(X) =40}

Cov(X,Y)

Oy 'Oy

The correlation coefficientis r =

_ E(XY)—E(X)E(Y)

Oy Oy

2
__ Aoy
oy 4oy

CORRELATION AND REGRESSION

Two or more variables are interrelated in many situations such as business , industry , agriculture and so
on. Two variables are correlated if a change in one variable affects the other variable. Otherwise the two
variables are called uncorrelated variables. In particular two variables are said to be positively correlated if
one variable increases ( or decreases ) as the other variable increases ( or decreases ). Two variables are
said to be negatively correlated if one variable increases ( or decreases ) as the other variable decreases ( or
increases ). There are two measures of correlation coefficient between two variables. They are ( a ) Karl
Pearson’s coefficient of correlation ( b ) Spearman’s coefficient of rank correlation.

KARL PEARSON’S COEFFICIENT OF CORRELATION

The Karl Pearson’s coefficient of correlation between two variables X and Y is usually denoted by r (X, y)

and is defined by
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*Z x=X)(y-¥) cov(X,Y)

\/Zxx\/Zyy Tx Oy

were X, X,, ..., X, and Y, Y,,...., Y, are the

values of the random variables X and Y respectively and X, Y are the mean values of X and Y respectively.

NOTE:

The above formula is useful if X and Y are integers. The following formulae are useful when X and Yy are

not integers and the given observations are large.

DIFFERENT FORMULAE FOR COEFFICIENT OF CORRELATION

(A) The coefficient of correlation between two variables X and Y is given by

i Xy —Xy
r(x,y)=
(y) 1 2 2 2 2
HZx X2 =D YA -y

( B) The coefficient of correlation between two variables X and Y is given by

D Xy—> x2y

RS S
NOTE:
Two variables X and Y are uncorrelated if r (X, y) =

Two variables X and Y are uncorrelated if COV( XY ) =0.

PROPERTIES OF CORRELATION COEFFICIENT

1. The coefficient of correlation r(x, y) lies between - 1 and 1.

NOTE:

(i) If r =1, then the coefficient of correlation between two variables is perfect.

(i) If r =-1,then the inverse of coefficient of correlation between two variables is perfect.

(iii ) If r =0, then the two variables are independent ( or uncorrelated ). i.e There is no relation between

two variables.

2. The coefficient of correlation is independent of change of scale and origin of the variables X and Y.

2 2 2
o, +to, —o
3.If X and Y are random variables, then r (x, y) =X Y XY

20, Oy

71



Example 1. If X and Y are uncorrelated random variables with variances 16 and 9. Find the
correlation coefficient between U =X+Y and V=X-Y.

Since X and Y are uncorrelated, COV(X,Y) =0.
Given that V(X):ai =16 and V(Y)= ol =9

ie. E(X) —(E(X))'=16 and E(Y) —(E(Y)) =9

E(U)=E(X+Y)=E(X)+E(Y) E(V)=E(X-Y)=E(X)-E(Y)
E(U*)=E(X+Y) E(V?)=E(X-Y)

=E(X?+Y?+2XY) =E(X?+Y?-2XY)

=E(X?)+E(Y?)+2E(X)E(Y) =E(X?)+E(Y?)-2E(X)E(Y)
(EQ)) =[E()+EM] (E(V)) =[ECO-E(V)]

=(E(X)) +(E(Y)) +2E(X)E(Y) =(E(X)) +(E(Y)) ~2E(X)E(Y)
E(U?)=(B(U)) =E(X*)+E(Y*)+2E(X)E(Y) | £(v2)=E(X?)+ E(v2)-2E(X)E(Y)
~(E(X)) = (E(Y)) ~2E(X)E(Y) —(E(X)) =(E(Y))' +2E(X)E(Y)

E(UV)-E(U)E(V)=E(X?)-E(Y2)~(E(X)) +(E(Y))
E(UV)-E(U)E(V)
VEW) (V) {EV) -(EV))

- 2 2 2 2
\/O'X +0, \/O'X + 0,

2 2
oy —0Oy

r-UV -

2 2
Oy +0y

~16-9
16+9

_ L
25
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4ax, 0<x<l1

Example . Two independent random variables X and Y are defined by f, (x)= 0. otherwise
, i

4by, O0<y<1
0, otherwise

and f,(y) :‘ . Showthat U=X+Y and V =X-Y are uncorrelated.

Since X and Y are independent, E(XY)=E(X)E(Y).

By the definition of p.d.f By the definition of p.d.f
.[ fy (x)dx=1 J‘ f,(y)dy=1
N N
I 4ax dx=1 'f 4by dy =1
0 0
X2 yz !
4{{_) =1 4b[—) =1
0 0
4a(1 =1 4b(l =1
2 2
a== b=l
2
1 1
E(X)=] x f(x) dx E(X?)=] %* f(x) dx
. .
:I 2x° dx :I 2x° dx
0 0
5] (%]
3 0 4 0
_2 _1
3 2
. 2 .. 1
Similarly E(Y)=§ Similarly E(YZ)ZE
o’ =Var(X)=E(X?)-(E(X)) o> =Var(Y)=E(Y?)~(E(Y))
141 141
2 9 18 2 9 18

If U and V areuncorrelated, then correlation coefficient r =0

ie. Cov(U,V)=0
ie. E(UV)-E(U)E(V)=0
=0

)
ie. E((X+Y)(X=Y))-E(X+Y)E(X-Y)
)

ie. E(X*=Y?)=(E(X)+E(Y))(E(X)-E(Y))=0

2

ie. E(X?)-E(Y?)—(E(X)) +E(X)E(Y)-E(Y)E(X)+(E(Y)) =0
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Example. Find the coefficient of correlation between X and Y from the data given below.

X : 65 67 67 68 69 70 72
Y 67 65 68 72 72 69 71
X Y X? Y? XY
65 67 4225 4489 4355
66 68 4356 4624 4488
67 65 4489 4225 4355
67 68 4489 4624 4556
68 72 4624 5184 4896
69 72 4761 5184 4968
70 69 4900 4761 4830
72 71 5184 5041 5112
544 552 37028 38132 37560
< :%:%4:68 and o, :\/LGxzj_(%x jz :\/ng_(eg)z =2.121

8

Y:l=%:69 and o, =\/(ZHY2J—(ZnY JZ =\/(@)—(69)2 =2.345

c:ov(x,v):ZnXY _an .ZE]Y =750 _egx69=3

Cov(X,Y) 3
2121 2.345

Coefficient of correlation r = =0.603

Oy Oy

EXAMPLE : The following table gives the number of blind per lakh of population in different age groups.
Find out the correlation between age and blindness.

Agein 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80
years

Number 55 67 100 111 150 200 300 500
of Blind
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X; -45

Since the grouped distribution is given , we use the idea of change of scale and origin. Take u; =

10
andvi=y, -200
The coefficient of correlation between X and Y is given by
1 __
=>uv-uv
r(xy)=r(uv)= - n T (1)
2 =2 2 o2
— ) >u -=-u", [/ —>Vv
hZv T,
Mid value | No.of _X;-45 o , ,
Age X, blind y u;= 10 vi=y,-200 | uivi | u; Vi
0-10 5 55 -4 - 145 580 16 21025
10-20 15 67 -3 -133 399 9 17689
20-30 25 100 -2 -100 200 4 10000
30-40 35 111 -1 -89 89 1 7921
40-50 45 150 0 -50 0 0 2500
50-60 55 200 1 0 0 1 0
60-70 65 300 2 100 200 4 10000
70-80 75 500 3 300 900 9 90000
-4 -117 2368 44 | 159135
1 . _ -4
ThenthemeanofU=—zui ie. U= — =-05
n -1 8
1 __ -117
Also the mean of V = o Z VvV, ie. V= 5 =-14.625
i=1
1
=(2368)-(-0.5)(-14.625)
Hence r(Xx,y) = T 8 T =0.89
\/ 3 (44)-(-05)° \/ 3 (159135) - (-14.625) °
Since the coefficient of correlation r (X, y) is positive, the age and blindness are positively correlated.
RANK CORRELATION
Let X, X;, ...., X, and Y,, Y,, ...., Y, are the values of the random variables X and Y respectively . Then the

Spearman’s rank correlation coefficient between two variables X and Y is usually denoted by p(X, y) and

is defined by
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where n is the number of observations and

di=rankofx;-rankofy;

2
m(m* -1
Note: In the formula add the correction factor % to Zdiz , where m is the number of times an

item is repeated.

EXAMPLE : Distribution of marks in Economics and mathematics for ten students in a certain test is given
below.

Student
Number

Marks in

. 25 28 32 36 40 38 39 42 41 45
Economics

Marks in

. 70 80 85 75 65 59 48 50 54 66
Mathematics

Calculate the value of rank correlation coefficient.

Student Marks. in Marks %n Rank of | Rank of d.=R1-R, d,2
number | Economics x; Mathematics y i xi(R1) | yi(R2)
1 25 70 10 4 6 36
2 28 80 9 2 7 49
3 32 85 8 1 7 49
4 36 75 7 3 4 16
5 40 65 4 6 -2 4
6 38 59 6 7 -1 1
7 39 48 5 10 -5 25
8 42 50 2 9 -7 49
9 41 54 3 8 -5 25
10 45 66 1 5 -4 16
270

Then the Spearman’s rank correlation coefficient between two variables X and Y is

6idf
i=1

m = —06364

p(xy)=1-

Hence the Spearman’s rank correlation coefficientis p (x,y ) =- 0.6364.
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EXAMPLE : From the following data, calculate the coefficient of rank correlation between X and Y.

X 32 55 49 60 43 37 43 49 10 20
Y 40 30 70 20 30 50 72 60 45 25
X Y Rank of X (R1) Rank of Y (Rz2) di=R1-R: di2
32 40 8 6 2 4
55 30 2 7.5 -5.5 30.25
49 70 3.5 2 1.5 2.25
60 20 1 10 -9 81
43 30 5.5 7.5 -2 4
37 50 7 4 3 9
43 72 5.5 1 4.5 20.25
49 60 3.5 3 0.5 0.25
10 45 10 5 5 25
20 25 9 9 0 0
176

Since some ranks are repeated , we have

m(m?®-1)
The correction factor C.F = Z o where m is the number of times a rank repeated.
2(2°-1 2(2°-1 2(2°-1
Therefore C.F = ( ) + ( ) + ( ) =15
12 12 12

n n
2 : 2
Hence corrected E d,” = Correction factor + actual E d,
i=1 i=1

=15+176

=177.5

Then the Spearman’s rank correlation coefficient between two variables X and Y is
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Hence the Spearman’s rank correlation coefficientis p (x,y ) =- 0.0758.

EXAMPLE : Ten competitors in a beauty contest are ranked by three judges in the following order.

First judge 1 6 5 10 3 2 4 9 7 | 8
Second Judge 3 5 8 4 7 10 2 1 6 9
Third Judge 6 4 9 8 1 2 3 10 | 5 | 7

Use the method of rank correlation to determine which pair of judges have the nearest approach to common
likings in beauty.

Ranks by the Judges d: d: ds
First | Second | Third d,? d.? d3?
R1i-R2 | R2-R3 | R1-R3
(R1) | (Rz) | (R3)
1 3 6 -2 -3 -5 4 9 25
6 5 4 1 1 2 1 1 4
5 8 9 -3 -1 -4 9 1 16
10 4 8 6 -4 2 36 16 4
3 7 1 -4 6 2 16 36 4
2 10 2 -8 8 0 64 64 0
4 2 3 2 -1 1 4 1 1
9 1 10 8 -9 -1 64 81 1
7 6 5 1 1 2 1 1 4
8 9 7 -1 2 1 1 4 1
200 214 60

Then the Spearman’s rank correlation coefficient between first and second judges is

esidi2
i=1
n(nz—l)

P (xy)=1 - =-0.2121

Then the Spearman’s rank correlation coefficient between second and third judges is

Gzn:diz
i=1

m = —0297

Pz,s(xa y):]- -
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Then the Spearman’s rank correlation coefficient between first and third judges is

Gidf
i=1

p1’3(X, y)=1 -

Since the Spearman’s rank correlation coefficient between first and third judges is positive and maximum,
we conclude that the pair of judges 1 and 3 has the nearest approach to common likings in beauty.

Regression Analysis

Regression shows a relationship between the average values of two variables. Thus regression is helpful in
estimating the average value of one variable for a given value of the other variable.

The best average value of one variable associated with the given value of the other variable may also be
estimated by means of an equation, known as regression equation.

Regression line of X on Y. It gives the estimate of the value of X for a specified value of Y.
- (o} =
(x=X)=r—=(y-v)

Oy

Regression line of ¥ on X. It gives the estimate of the value of Yy for a specified value of X.

(y—7)= I’&(X—Y) where

Oy

Y xy-Yx3y , (%) , ()
r= - =, Oy = ZX —~—=———and o, = Z -
X (T Yy ~(Z) J J ’

cov(X,y)
0,0,

Note: =

o
Regression coefficient of Xon y is b, =r—*= =
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Properties of Regression Coefficient:

1. The correlation coefficient is the geometric mean of the regression coefficients.

ie. r=,/b. .b

xy * Myx
2. If one of the regression coefficients is greater than unity, then the other is less than unity.

3. Both the regression coefficients will have the same sign.

4. The sign of correlation coefficient is same as that of regression coefficients.

Properties of linear regressions:

1. Two regression lines always intersect at the means.

2. If r =0, then the regression coefficients are zero and the regression lines are perpendicular.

3. If r==1, the regression lines becomes identical.

2
If O isthe angle between two regression lines, then tang = (1_ r J 9x9y

r Jo/+o,]
Example . The equations of two regression lines are 3x+12y =19 and 9x+3y =46. Find X, y

and the correlation coefficient between X and Y .

Regression lines are passing through (X, 7) . Therefore
3X+12y =19 ....(1)
OX +3V =46 ....(2)
(@) =<3 gives, 9X +36y =57 ....(3)

(3) —(2) gives, 33y =11 and hence y = %

From (1), 3X+4=19 and hence X =5.

Let the regression line of Y on X be 3x+12y=19 i.e. xz_%x+%
Hence b, :_i
g 12
: : . 46 3
Let the regression lineof X on Y be 9x+3y =46 ie. X:?_§y
Hence b, =—§
9
But r’=h,, xb S (32X rherefore 1 L
= == -—— |==. erefore ' =——+=
A 12) 12 23
Example: Given that the variance of Xx=9 and the regression equations are

8x—-10y+66 =0, 40x—18y =214. Find (a) mean values of xand y (b) coefficient of correlation
between Xand Yy (c) standard deviation of Y.

We know that the regression equations are passing through (7, 7) . Therefore

8% —10y = —66.
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40X —-18y = 214.
Solving the above equations, we get X =13, y =17.
Let us assume that the line 8Xx—10y + 66 = 0 be regression equation of ¥ on X.

Therefore

} 8
ie. b, =—
10

Let us assume that the line 40x —18y =214 be regression equation of X on Y .

Therefore
18 214
40 48
ie b, _18
40
But r=.fo. b, = |oxB_,6

Yo N18 40 10

Itis given that 6. =9 = o, =3

Example . Marks obtained by 10 students in Mathematics (X) and Statistics (Y) are given

below:

X| 60 | 34| 40 | 50 | 45 | 40 | 22 | 43 |42 | 64
Y| 75 | 32| 33 |40 | 45| 33|12 |30 | 34| 51

Find the two regression lines. Also find Y when X =55.

X Y X? Y? XY

60 75 3600 5625 4500
34 32 1156 1024 1088
40 33 1600 1089 1320
50 40 2500 1600 2000
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45 45 2025 2025 2025
40 33 1600 1089 1320
22 12 484 144 264
43 30 1849 900 1290
42 34 1764 1156 1428
64 51 4096 2601 3264
440 385 20674 17253 18499

_ X _ Y
g2 X _40_,, g o2 385 oo
n 10 n 8

(T p - Ny XY= X>'Y :10(18499)—(440)-(3285) 0641

oy Y (YY) 10(17253) - (385)

(O - nY_XY =Y XYY _10(18499) —(440)-(385) 1186

X nY x*~(3X)°  10(20674)—(440)’

Regression line of Y on X Regression line of X on Y
Y-Y)=r2(x-X X-X)=rZx(y-y

(19)=r (%) (4-X)=rZefy-)
(Y —38.5) =1.186(X —44) (X —44) = O.641(Y —38.5)
Y =1.186X —13.7 X =0.641Y -19.3

When X =55, Y =1.186(55)-13.7 =51.5

Transformation of Random Variable

Let the two random variables X and Y have the joint probability density function f,, (X, y) . Two
new random variables U and V are formed from X and Y as U =g (X ,Y) and V = h(X ,Y)

where ¢ and h are differentiable functions. Now the joint probability function of U and V is

fov (u,v): f (X, y)|J| where J = i:” >Y(V :

u \

Example 1. If the pd.f ofatwo dimensional random variable (X ,Y) is given by

f(x,y)=x+y, 0<X, y<1. Find the pd.f of U =XY.

Given U=XY and let V=Y. Re writing, we have Y=V, X=

< |c

u
y
82




Il
o <I|r
H
<I\J|C
Il
< |k

x
ov
(uv) | &
ov
Y

Therefore pd.f of (U )is g(u,v):f(x,

v=1

X+Yy

N—
<I|—‘L</

(11

< |c
+
<
N—
< |k
=1
Il
<

Given limitsare 0<x<1 and 0O<y<1
ie. 0<2<1 and O<v<l
v

i,e. O<u<v

Therefore the pd.f of U is g(u)=

é'—;S
(@)
—_
s
<
~
o
<

Example 2. Let (X ,Y) be a two dimensional non-negative continuous random variable having

Ay
the joint density f(x,y)= axye » X>0,¥>0 " gind the density function of U =X +Y?.

0 , otherwise

Given U =+x*+y® andlet V=Y. Re writing, we have Y=V, x> =u’- y2

X =AU —v?
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ox X | u v |
o(xy) lou ov u
N J=2\"7) — 2,2 22| —
ow Su) oy oy Ju ; Ve A ; v Y
ou ov
Therefore p.d.f of (U ,V) is u=0

g(uv)=f(xy)J|

u=v

Given limitsare x>0 and y>0

ie. Yu!'=v*>0 and v>0

ie. u -v3>0

ie. U>V

Therefore the pd.f of U is g(u)=.[ g(u,v)dv

2
4uve™ dv

2 u
= que™” (V—j
2 0

2
=2u% ™", 0<u<w

O e

v=0

Example 3. If X and Y are independent with common p.d.f (exponential), find the p.d.f of

X-=Y.

Since X and Y follows exponential distribution, its p.d.f is f(x)=e™, x>0 and

f(y)=e”, y>0

Also X and Y areindependent. Hence f(X,y)=f(x)xf(y)=e"e™, x>0;y>0

Let U=X—Y andlet V=Y. Re writing, we have Y=V, X=u+y

X=u+Vv
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x

Now J = a(x,y) _|ou
o(u,v) |9y

ou

Therefore p.d.f of (U,V) is

2l 2[R

u=-v

g(uv)=f(xy)|

Given limits are x>0

— e_(x+y) .1

_ e—(u+2v)

u=0

and y>0

ie. u+v>0 and v>0

ie. U>-V

Therefore when u<0; —u<v<oco andwhen u>0; O<v<oo

Therefore the pd.f of U is g(u)=.[ g(u,v)dv

J e dv,u<0
-u

_[ e dv,u>0
0
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Example 4. If X and Y are independent random variables with probability density functions

f(x)=4e™, x>0and f(y)=2e™, y>0. (i) Find the density function of U = Xx v
+
V =X+Y (ii) Are U and V independent? (iii) Whatis P(U >O.5)?
Since X and Y areindependent, f (X, y)= f(X)x f (y):SeJ‘Xe_zy, x>0;y>0
Given U= and v=X+Y. Re writing, we have, u== and y=v-x
v
X=U and y=v-uw
x o
NowJ:a(X’y):au v _|Y Yoy _wrw=y
o(uv) [oy oy |-v 1-u
ou ov
Therefore p.d.f of (U ,V) is u=0 u=1
guv)="f(xy)J|
_ 8e—(4x+2y) RY;
—8v e—(4uv+2v—2vu)
—8v e—2v(u+1) w=0
Given limitsare x>0 and y>0
ie. uwv>0 and v-uv>0
iee. U>0&v>0 and 1-u>0& v>0
Combining, we get 0<u<1 & v>0
Now the pd.f of U is 2
P . The pd.f of V is g(v)=f g(u,v)du
g(u)=[ g(uv)dv -
:0 :J‘ 8ve—2v(1+u) du
:I 8ve 2™ dy 0 )
0 B —2v(1+u)
®© =8v ¢
e—2v(1+u) e—2v(l+u) —2V
:8 V- —1. 3 :
—2(1+u) 4(1+ u) et gy
0 =8v +
2 | —2v 2V
(1+ u)2 = 4[9’2" _e"“’:'
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Consider g(u)xg(v)= ><4[e‘2V —e™ ] #=g(u,v).

2
(1+u)
Therefore U and V are notindependent.

P(U>05)=P(0.5<U <1)

Example 5. If X and Y areindependent random variables each normally distributed with

Y
mean zero and variance o, find the p.d.f of R=+/X 24Y? and 6= tanl(y) )

Since X and Y follows normal distribution with mean zero and variance ¢?, its pd.f is

f(X): e_[X], —00< X <00 and f(y) ! [y], —0<Yy<oo,

Joro ~Joro

[ XP+y?
Also X and Y areindependent. Hence f(x,y)=f(x)xf(y)= 5 ! —e [ 207 J —0< X, Y <o
o
Given transformations are r=/x*+y’ and 9=tanl(%j.
Re writing, we have X=rcosd y=rSin0
Therefore p.d.f of (R,H) is Here
OX OX
. o(r.0) |oy oy
1 {%F or 06
— e 20 r
270° _[cos@ —rsino
,[i] sin@ rcosé
= el A
270 =r(cos 0+sin’0)

=r

Given limitsare —0 <X, Yy <o

ie. O<r<oo and 0<@<27

87



The pd.f of R is g(r)=

é'—-S
«
—_
=
)
~
o
N

The pd.f of @ is g(&)zj. g(r,0)dr

2 i riz
2o . - 47:-02J' e [20 ]d(rz)
:Le_[z"ZJ i T
i ! e[z"]
 4xo? {é}
0
1

27

Central Limit Theorem

We know that the sampling distribution of the mean will equal to the population mean. As the
sample size increases, the sampling distribution of the mean will approach normality. The
relationship between the shape of the population distribution and the shape of the sampling
distribution of the mean is called the central limit Theorem.

Theorem: The probability distribution function of the sum of a large number of independent,
identically distributed random variables X, with mean g and variance ¢ approaches a Gaussian

distribution with mean 0 and variance 1.

Definition : When sampling is done from a population with mean and standard deviation o the

_ . - > X+ X+ X,
sampling distribution of the sample mean X |or X = "

) will tend to a normal

o)
distribution with mean x and standard deviation T as the sample size N becomes large.
n

If X = X+ X, +----+X,, then it will tend to a normal distribution with mean ng and standard

deviation o/ N as the sample size N becomes large.

Note: The significance of the central limit theorem is that it permits us to use sample statistics
(mean, variance etc.,) to make inferences about population parameters.

Example: The life time of a certain brand of an electric bulb may be considered as a random
variable with mean 1200 hours and standard deviation 250 hours. Find the probability using
central limit theorem that the average life time of 60 bulbs exceed 1250 hours.

Given Nn=60, £=1200, o=250.
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Xi+ X, 4+--+X
60

Let X =

o
1 and standard deviation T

Therefore P()? 21250) =P

=P|Z>

n

1250-1200
250

J60

=P[z>1.55]

=0.5-P[0<z<155]

=0.5-0.4394

=0.0606

% . By Central Limit Theorem, X follows normal distribution with mean

==I) 2:1.55

Example: A random sample of size 100 is taken from a population whose mean is 60 and variance
400. Using central limit theorem find what probability that we can assert that the mean of the
sample will not differ from 4 more than 4.

Given n=100, =60, &”=400, o=20.

Let X =sample mean. By Central Limit Theorem, X follows normal distribution with mean 4 =60

o 20 _
and standard deviation —==—===2. We have to find the probability for ‘X - ,u‘ <4,
Jn 100

Therefore P (‘ X — ,u‘ < 4)

Il
e

P(—4£

X

—,uS4)

p—-4<X <pu+4)
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<Z<
2 2

:P{SG—GO 64—60}

==I) 2:1.55
=P[-2<Z<2]

=2xP[0<z<2]
=2x0.4772
=0.9544

Example: Consider 12 uniformly distributed independent random variables in the range (O, 1).

Find P[) X, >8].

= = and

Here each X; are uniformly distributed in (0,1). Hence mean E(X):a%b %

N |-

_boa’ 10 1
12 12 12

Here X =X, +X,++++Xp,. Therefore mean nu= 12><% =6 and standard deviation

o = %x«/ﬁzl

variance Var (X))

8 —mean
Therefore P[z Xi > 8] - P{Z g S—D}

8-6
S
=P[Z>2]
=05-P[0<Z<2]
=0.5-0.4772
=0.0228

Example : A box contains many 100ohm resistors with a tolerance of 10 ohms. If 10 resistors

are drawn and connected in series find the probability that the resistance of the circuit is between
900 and 1100.

Let X bearandom variable representing resistance of one resistor. It follows uniform distribution
in (100 -10, 100+10) = (90, 110).
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a+b 90+110 b?—a? 1102-90> 4000

Hence mean E(X )= =100 and variance Var (X )=

2.2 12 12 12
Here X =X;+X,+--+X,,. Therefore mean ng=10x100=1000 and standard deviation
4 4
on == 000, 10 = [10.20%0 OOO
Therefore P[QOOSZ‘Xi 31100]: P 900 —mean <7 SilOO—mean
SD SD

o[ 900-1000 _ 11001000
~[ao000 " [a0000
12 12
=P[-1.732<Z <1.732]

=2xP[0<Z <1.732]
=0.9164

Example : 20 dice are thrown. Find the probability that the sum obtained is between 65 and 75
using central limit theorem.

Let X, be arandom variable representing the number shown on the i" die. .. P ( X, ) =

ol

1 1 .1 1 1 1 7
Th =E(X)=) xP(X)=1.—+2.—+3.—+4.—+5.—+6.—=—
en (=E(X)=2 XP()=1o+ 25435+ 4o45.046.0=7

E(XZ)ZZXZP(X)=12.1+22.1+32.1+42.1+52.1+62,1:9_1
6 6 6 6 6 6 6

]2 91 49 35

o’ =Var(X)=E(X?)-[E(X PARET

Let X = X+ X, +----+X,, be the sum of total faces.

Therefore X follows normal distribution with mean n,u=20><%=70 and standard deviation

af_\ﬁx \/F

Therefore P[65<ZX >70] P 65— 70 75 70

[17 [17
=P[-0.65<Z <0.65]
=2xP[0<Z <0.65]
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=2x0.2422
=0.4844

Example : An economist wishes to estimate the average family income in a certain population. The
population standard deviation is known to be 4,500, and the economist uses a random sample of
size n=225. What is the probability that the sample mean will fall within 800 of the population
mean?

Given N=225 u=800, o =4500.

Let X =sample mean. By Central Limit Theorem, X follows normal distribution with mean

o 4500 _
=800 and standard deviation —— = —— =300, We have to find the probability for |X — x| <800
H 25 p y ‘ ﬂ‘

=P|0<Z<

=P[0<Z <267]
= 0.4962

1600 - 800}
300
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Exercise

1. Let X and Y be two discrete random variables with joint probability mass function
P[X =xY =vy] :{%(2x+ y), x=12 & y=12

=0 otherwise
Find the marginal probability mass functions of X and Y .

2. The two lines of regression are 8X —10Y +66=0, 40X —18Y —214=0. The variance of X is 9.
Find the mean values of X and Y . Variance of Y . Also find the coefficient of correlation between
the variables X and Y .

3. Ifthejoint pd.f of (X,Y)is f(x,y):%, 0<x y<2. Find P(X+Y <1).

4. Ifthejoint p.d.f of two dimensional random variable (X,Y) is given by

1
f(x,y)=x2+%, 0<x<1,0<y<2. Find (i) P(X >Ej (i) P(Y<X).

5. The joint p.d.f of the two dimensional random variable (X ,Y) is given by

f(x,y)= g xy, 1< x<y<2. Find (i) Marginal densities of X and Y (ii) Conditional density

functions f(y/x) and f(x/y).

6. The joint probability density function of the two dimensional random variable (X ,Y) is

f(x,y)=2—-x—y, 0<x,y<1. Find the correlation coefficient between X and Y .

7. If the independent random variables X and Y have variances 36 and 16 respectively, find the
correlation coefficient between X +Y and X =Y.

8. If X and Y are independent random variables with probability density functions

f(x)=e™, x>0and f(y)=e”, y>0. (i) Find the pd.f of U = XXY, V=X +Y
_|_

(ii) Are U and V independent?

9. A small college has 90 male and 30female professors. An ad-hoc committee of 5 is selected at
random to write the vision and mission of the college. If X and Y are the number of men and

women in the committee, respectively what is the joint probability mass function of X and Y ?
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ANSWERS

1. Px(x)=%(4x+3), X=1,2&|3Y(y)=%(2y+6), y=12 2. )?:13,\7:17, o, =4, r=06

90C, 30C, x=0,1,..,90
8. g(u,v)=ve™, <U<L V>0, Independent 9. p(x’y):—lzocS ' y=0,1,...,30
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Unit-III Random Processes

A stochastic process is a collection of random variables evolving over time, which is used to model
uncertainty in dynamic systems. Stochastic processes are also used to represent signals with
random behavior, such as thermal noise in receivers or fading in wireless channels. A Poisson
process is often used to model the arrival of packets in communication networks, particularly in
queueing theory.

Random variable is a function X (s) that assigns a real number to each outcome of an experiment.

But random process is a function of time X (s,t) that is assigned to each sample point based on

some rule.

Classification of Random Processes

e Ifboth s and t are discrete, the random process is called a discrete random sequence.
e If s isdiscrete and t is continuous, the random process is called a discrete random
process.
e Ifboth s is continuous and t is discrete, the random process is called a continuous random
sequence.
e Ifboth s and t are continuous, the random process is called a continuous random process.
Let {X (t)} be arandom process. The mean of {X (t)} is defined by

E{X(t)}=uy (t)= T x f, (x,t) dx where X (t) is treated as a random variable for a fixed value of t

The auto correlation of the process {x ()} is defined as

R (t 1 )= E[{X (t,) X(t,) }]: J. J' % T (X% it,t,) dx dx,

The auto covariance of the process {x (1)} is defined as Cy, (1, , t,)=Ryy (t,t,)— 25 (1) 22 (1)
Special Classes of Random Processes

If certain probability distribution or averages do not depend on t, then the random process is
called stationary.

Arandom process {x ()} is said to be first order stationary process if , = E[{X(t)}] is a constant

A random process {x (t)! is said to be strongly stationary or strict sense stationary if all its finite

dimensional distributions are invariant under translation of time parameter.

A random process {x (t)} is said to be second order stationary if the second order density must be

invariant under translation of time parameter. In particular, the auto correlation function is a

function of time difference.

https://doi.org/10.5281/zenodo.15090289
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A random processes {X(t)} is called Wide Sense Stationary(Weak Stationary/Covariance

Stationary), if its mean is constant and autocorrelation function depends only on the time
difference. i.e.

E{X(t)} is always a constant and

E{X(t)-X(t+z’)}: Ry (T) (or) E{X(tl)'x(tz)}:Rxx (tz _ti)

Two random processes {X (t)}and {Y (t)} is called jointly wide sense stationary, if each is WSS and

their cross correlation function depends only on the time difference. Le.

E{X(t)-Y(t+7)} =Ry (7)

A random process {x(t)} is said to be mean ergodic if ensembled mean is equal to time average

mean. i.e E{X(t)}— Lt iT X (t) dt
T oo 2T 4
A random process (X ()} is said to be correlation ergodic if
Lt 1 °
R ,t — X t
o (0 ) T w2 TIT

A random process {x(t)} which is not stationary in any sense is called evolutionary random
process. Poisson process is an evolutionary process.

Properties of Auto Correlation Function

* Ry (7) isaneven function

* Ry (7) ismaximumat 7=0 ie. ‘R(T)‘ < R(O)

Meanof[X ] T_>OO Z')
« E[X’(t)]=R(0)
* Ry (T) =Ry (_T)

* |Ry (7)]=4/Rex (0)-Ry (0
 Two random processes {X (t)}and {Y (t)} are orthogonal if R,, (7)=0

Example: The probability distribution of the process {x ()} is given by

PX(t)=n]=| @+at)™’ 123,

at n=0
1+at

Show that {x (1)} is not stationary.
Given {x(t)} and P{X (t)} are tabulated as follows:
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(X () n 0 1
o Pk
E[x(v]= 3 np(x,)
_o.at o1 at ., (at)’
© l+at (1+atf (+at) (+at)
1 at (at)’
(A+aty

_ 1 1 r
(1+at)’ | (L+at)

1 2
= ay (L+at)

= 1, a constant

= X [n ()] () -~ X0 p(x)
={1.2 R N QL
(1+at) (1+at) (1+at)
1.2 ., 2.3 _a 3.4 (at)
B (1+at)’ 1.2 (L+at) 1.2 (l+at)
2 at -
B (1+at)2 {1 - (1+at)} -1
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B (1+2at)2 { (1+1at) r -
= 2(1+at) -1

= 1 + 2at, which is dependent on t.

Therefore {X(t)} is not stationary

Example : The auto correlation function of a stationary random process is

R(r) =16+ 9 > Find the mean and variance of the process.

Lt Lt 9

E[X(t)]=R(0)=16+9=25 and (E[X(t)])’ = L R@=_ 16+ =16

Hence Mean E[X (t)] =4. Therefore Var[ X (t) = E[xz(t)]—(E[X (t)])2 =25-16=9

Example : Arandom processes {X (t)} is defined by X (t)=Kcoset, t >0 where @ isa

constant and K is uniformly distributed over (0,2). Find the autocorrelation of X (t).

Since K is uniformly distributed over (0, 2), f (k) = % O<k<2

Autocorrelation Ry, (t,—t,)=E{X (t,)- X (t,)}

=E(Kcosat, - K cosat,)

= (cos(a)tl)-COS(a’tz))E(Kz)

2
B %(Cos(aﬁi + o, ) +cos(aty —wtz))jkz'%dk
0
1 |
= Z(cos(cot1 +wt, ) +cos(at, —wtz)){g}
0
= %(cos(a)tl +at, ) +cos(at, — at,))

Example : Show that the process X (t) = Acos(«t +6) is not stationary if ¢ is uniformly

distributed in (0, 7).

Given X (t)=Acos(at+6) and @ is uniformly distributed in (0, 7).

Therefore f(6)= 1 0<O<xm
T
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E[X (t)]=E[Acos(wt+6)]
= Ajf cos(wt+@) f(0)do

= AJ' cos(wt+6) do
4 0

[sin(wt+6)];

[sin( 7 +wt ) — sin et |

N[> N[> 3N|>

[ sin wt — sin ot |
Since E{X (t)} depends on t, itis not stationary.

Example: Show that the random process X (t) = Asin(at+6) is wide sense stationary
where A and @ are constants and ¢ is uniformly distributed in (0,27).

Since @ is uniformly distributed in (0,27), The pd.f is f(@):zi, 0<0<2r
T

E[X(t)]=E[Asin(wt+6)]
= AT sin(wt+6) £(0)do

2z

= %l sin(wt+6) do

A [—cos(wt+6)]3
2r

= A [“cos(2z+wt) + cosat ]
2

_ A [ cos wt + cos et |

27

= 0, a constant
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—
x
~+

[y
N—"
>
—~+

N

N—"

—_
Il

E[Asin(wt, + 6 )Asin(wt, +6)]

2z
A? f sin(wt, +6 )Asin(wt, + 8 ) f(9) dé

0

2 2z
- A j sin(wt, +6 ) sin(wt, +0) dé
2 3,
2 2r
= o j cos(wt, —wt, ) — cos(wt, +wt, +260) d@
4 0

2

_ A cos(wt, ~wt, )[ 0 |7 - A

2
> o [sin(wt, +wt, + 260 )]

2

= A? cos(wt, —wt, )- ZA_ [sin (47 +wt, + wt, )—sin (wt, +wt, )]
T

2
= A? cos(wt, —wt, )- 2A_7r [ sin (wt, +wt, )—sin (wt, +wt, )]
= A? cos(wt, —wt, ), a functionof (t, —t, )

Therefore {X (t)} isW.S.S.

Example: Show that the random process X (t)=cos(At+Y) is stationary in the wide sense

If Y is the random variable with characteristic function ¢ () and if $(1)=0 and ¢(2)=0.

The characteristic function ¢(w)=E[e"" ]
= E[cos @Y +isinwY |
= E[coswY |+i E[sinwY |
But ¢(1)=E[cosY]+i E[sinY]
O=E[cosY |+i E[sinY]
Therefore E[cosY]=0, E[sinY]=0.
Similarly ¢(2) =0 gives E[cos2Y]=0, E[sin2Y]=0
Now E(X(t))=E(cos(At+Y))
=E(cosAt cosY +sin At sinY)

=cosAt -E(cosY)+sinit-E(sinY)
-0
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Example : A random processes {X (t)} defined by X (t)= Acost+Bsint where A and B are

independent random variables each of which has a value -2 with probability 1/3 and a value
1 with probability 2/3. Show that X (t) is a wide sense stationary process.

The probability distribution of the discrete random variables A and B are as follows:

PjA) _: ; Therefore E(A):ZA.p(A):_z(%}rl@j:O
] e )-mR -3
P(B) | 1 2 Hence £(B)=0, E(B?)=2

3 3

Since A and B are independent E(AB)=E(A)-E(B)=0.

E(X(t))=E(Acost+Bsint)
=E(A)cost+E(B)sint
=0

Rex (t t,) = E{X (t,)- X (t,)}

X
E[(Acost1 +Bsint,)-(Acost, +Bsint, )|
[

E Azcost cost, + ABcost; sint, + BAsint, cost, +stmt sint ]

= E( A%)cost, cost, + E(AB)cost,sint, + E (BA)sint, cost, + E (B? )sint,sint,
= 2co0st, cost, + 2sint; sint,
=2cos(t,—t,)

Hence X (t) is a wide sense stationary process.

Example : Show that the random processes { X (t)} defined by X (t)=Acoswt+Bsinst where

A and B are independent random variables with zero means and equal variance is wide
sense stationary.

Given E(A)=E(B)=0. Also [E(A)] ~E(A)=[E(B)] ~E(B)=0
Therefore [E(A)]2 :[E(B)]Z =c°

Since A and B are independent E(AB)=E(A)-E(B)=0.
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E(X (t))=E(Acosat+Bsinat)
=E(A)coswt + E(B)sin wt
=0
Rex (t t,) = E{X (t,)- X (t,)}
=E[(Acosat, +Bsinat,)-(Acosat, +Bsinat, ) |
= E[A2 Cos ot, CoS wt, + AB €O wt, Sin wt, + BAsin wt, cos wt, + B sin wt, sin a)tz]
= E( A”)cosat, cost, + E(AB)cosat, sin mt, + E(BA)sin at, cos wt, + E (B )sin at, sin at,
= o’ cos at, cos at, + o sin wt; sin wt,
=o’cos(t,—t,)
Hence X (t) is a wide sense stationary process.

Example: Let X (t) = Acosat +Bsinat be arandom process where A and B are independent

normally distributed random variables with N (0,57 ). Is X (t) covariance stationary?
Given E(A)=E(B)=0. Also [E(A)] ~E(A)=[E(B)] ~E(B)=0".
Therefore [ E(A)] =[E(B)] =&
Since A and B are independent E(AB)=E(A)-E(B)=0.
E(X(t))=E(Acosat+Bsinat)

=E(A)coswt+E(B)sinat
=0

Rex (t t) = E{X (t,)- X (t,)}
=E[(Acosat, + Bsinat,)-(Acosat, + Bsinat, ) |
= E| A’ cosat, cos t, + AB cos at, sin e, + BAsin at, cos wt, + B sin et; sin at, |
= E( A%)cosat, cosat, + E(AB)cosat, sin at, + E(BA)sin at, cos e, + E (B )sin at, sin at,
= o’ coswt, Cos wt, + o sin wt, sin wt,

=o’cos(t,—-t,)
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Therefore covariance C(t,,t,)=R(t,t,)—E(t,)E(t,)

=o’cos(t,—t,)

Since covariance is a function of (t, —t,) and E[ X (t)] is constant, X (t) is covariance stationary.

Example: If X (t)= Acos(100t+¢) where A and ¢ are independent random variables with
E(A): 2,V (A):6 and ¢ is uniformly distributed in (—z,z). Prove that {X (t)} is WSS

process.

Since @ is uniformly distributed over (—z, ), the p.dfof & is f (0)= i —r<0<rx
V4

E(X(t))=E(Acos(100t +8))
(

= E(A)E(cos(100t +6))

2 | L cos(100t+6) do
I oon
:2><2><i ]{ COS(lOOt—i—H) do
27

:g [sin(100t+6) |/
zs [sin (100t + ) —sin (100t) ]

:% [sin (100t)—sin (100t)]
-0

We know that V (A) = E(A?)-[E(A) ]
6= |£(A2)—[2]2
E(A%)=10
We know that Ry, (t,, t,)=E{X (t)- X (t,)}
= E[ (Acos(100t, +86)) ( Acos(100t, +6)) |
= E(A?)-E[(cos(100t, +0)) (cos (100, +6)) ]

E(AY)
2

- E[ cos(100t, + 6 +100t, + £) + cos (100t, + 6 —100t, — ) ]
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= w E [cos (100(t, +1,)+26)+cos(100(t, —t, ))}

2
:@. E[ cos(100(t, +1,)+26) |+ E(:Z)- E[ cos(100(t, -t,))]
= @ E |:(:os(j|_00(t1 +t2)+ 20):' + - (:2) : COS(].OO(Tl -, ))

Consider
E[ cos(100(t, +1,)+20) | = j cos(100(t, +t,)+20)- f (6) d@

— 2 | cos(100(t, +1,)+26) do

2r

2 {sin(loo(tl +t2)+20)}”

To2r 2
1. .
= g[smloo(tl+t2)—5|n100(tl+t2)]
=0
E(A?
Therefore R, (t,, t,) :(T). cos(100(t, —t,))

Since E(X (t)) is a constant and auto correlation is a function of time difference (t,-t,), {X(t)}

is a wide sense stationary.

Example : If X (t)=Acos(Qt+6) where Q is a random variable with density function f, ()

and ¢ is uniformly distributed in (—7, z) and is independent with Q is WSS process.

Since @ is uniformly distributed over (—z, ), the p.dfof @ is f(6)= ZL’ —-r<b<rx
r

E(X(t))=E(Acos(Qt+80))
= A-E(cos(Qt+6))
= A-E(cosQt cos @ —sinQtsin 6)

= A-E(cosQt)E(cosd)—A-E(sinQt)E(sing)

=A~E(coth)2iJ‘ costH—A-E(sith)Zi'[ sing dé@
T T,
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E (cos Q) 2 cosd d6—A-E(sinQt)(0)
27[0

= A-E(cosQt 2 sing]”
2 0
T

=A. E(coth)% [sin 7 —sin 0]
=0

Also Ry (1, 1) =E{X (1) X (t,)}
= E[(Acos(Qt, +6))( Acos(t, +6)) |
= E(A?)E[ (cos(Qt, +6))(cos(t, +6))]
= E(A%)E[(cosQt, cos 6 -sinQt, sin §) (cos t, cos 6 —sin Qt, sin 0) |

_E (AZ) . cos. Qt cojc, Qt, cos” @ —cos Qtl- cosé’s-in Qt, s.inze
—sin Qt, sin @cos Qt, cos § +sin Qt, sinQt, sin“ &

= E(A’)E[cosQt, cosQt, ] E| cos® 0 | +E( A?) E[sinQt, sin Qt, | E[ sin® 6 |
—~E (A%)E[cosQt; sinQt, +sin Qt, cos Qt, | E[sindcos ]

= E(A%)E[cosQt, cosQt, | E[ cos® 0 | +E( A?) E[sinQt, sinQt, | E[ sin® 6 |

1 . .
—EE(AZ)E[Sln(Qt1+Qt2)]E[sm 20
= E(A’)E[cosQt, cosQt, ] _T cos’ 6 f(6) do
+ E(A*)E[sinQt, sinQt, ] ]ﬁ sin®@ (0) do

VA

_%E(AZ)E[Sin(Qtl+Qt2)]J; sin2¢ f(9) do

= E(A’)E[cosQt, cosQt, ] Zi T cos’6 do
T
+ E(A’)E[sinQt,sinQt, ] Zi]i sin?6 do
T
1 . 1 7 .
_EE(AZ)E[Sln(QtﬁQtz)}ZJ; sin20 dé
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But _T cos’ 0 do = ]T‘ sinf dd =1 and ]E sin20 d9=0
1 . .
- E(AZ)Z E[cosQt, cosQt, +sinQt; sinQ, |

1
- E(Az)g E[cosQ(t,—t,) ]
Since E(X (t)) is a constant and auto correlation is a function of time difference (t,—t,) whatever

be the value of f,, (), {X (t)} is a wide sense stationary.

Example : Show that the random process X (t)= Acos(wt+6) is wide sense stationary if A

and o are constants and ¢ is uniformly distributed random variable in (0, 27).

Since @ is uniformly distributed in (0,27), The pd.f is f(@):zi, 0<0<2rx
T

E[X(t)] = E[Acos(wt+€)]
2
= A I cos(wt+0) f(6) do
0
27
_ A I cos(wt+6) dé
2r
A . 2
= o [ sin(wt+6) ]
A . .
= 5 [sin (27 +wt)—sin ot |
_ A [sinwt — sinat ]
27

= 0, a constant

E[X(t,)X(t,) | = E[Acos(wt,+60 )Acos(wt,+6)]

2z
AZI cos(wt, +8)Acos(wt, +6) f (6) do
0

2 2z
= — j cos(wt, +8)cos(wt, +6)dé
2r 5
Az 2z
= I cos ( wt— wt, ) + cos (wt, +wt,+20 ) d@
4 0
A? " A? - *
= cos(wt,—wt,) [ @ |7 + yp [ sin(wt, +wt, +20 )]20
A? A .
= E(Zz)cos(wtl—wt2)+E[sm(4n+wtl+wt2)—sm(wt1+wt2)]
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= —cos(wt1 —Wtz)—:‘—z[sin(wt1 +Wt, ) —sin(wt, +wt, ) |
T

cos( wt— wt, ), a function of (t,-t,)
Therefore {X (t)} isW.S.S.

Example: If {X (t)} is a WSS process with auto correlation Ry, (r)=A- e ", determine the second

order moment of random variable X (8)—X (5).
E[X(8)-X(5)] =E[ X*(8)+X?(5)-2X (8) X (5)]
=E[X*(8) |+ E[ X*(5)]-2E[ X (8) X (5)]
We know that E[ X*(t) | =Ry, (0). Therefore E[ X*(8)]=E[ X*(5)]=Ae " = A
E[X (8)X (5)]= Ry (8-5) = Ac™
Therefore E[ X (8)— X (5)] = A+A-2Ae™

Example: If {X (t)} isa WSS process with auto correlation R, (7) andif Y (t)= X (t+a)— X (t—-a)
show that R, (7 ) =2R,y (z’)— - (z’+ 2a)— Ry (T—Za).

Ry (7 E[Y t+r)]
- E[(x(t+a)—x(t—a))-(X(t+f+a)—x(t+f‘a))}

=E[ X (t+a)X (t+r+a)|-E[ X (t+a)X (t+r-a)]
—E[X(t-a)X (t+z+a)]+E[ X (t-a)X (t+7-a)]

=Ry (7)-E[ X (t+a)X (t+7-a) | ~E[ X (t-a) X (t+7+a)]+Ry (7)

=Ry (7)— Ry (7 —2a) =Ry (r+2a)+ Ry (7)

Example : Find the average power of the process X (t)=10cos(100t+¢), where @ is

uniformly distributed over (o, %j

Since @ is uniformly distributed over (0, %j, f (9) = E, 0<f< %

E[ X?(t)]=E[100cos* (100t +6) |
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1
=100x=E|1 2(100t+ @
x5 [+cos (100t + )]

=50+50E [ cos2(100t +6) |

712

=50+50 [ cos2(100t+6) f(6) do

7l2

~50+50x 2 [ cos2(100t+6) do
4 0

. 7l2
_ 50+50><E sin2(100t +6)
T 2 o

= 50+@{sin 2(100t +%j—sin 2(100t)}
T

50 ] ;
=50+—| —sin2(100t)—sin 2(100t
+”[sm( )—sin2( )]

= 50—@sm 2(100t)

T

.
Average Power P,y =1 _: iT I E (t)] dt
o0 -T

t T
ij 50— %in2(100t) ot
T 5w 2T o /4

1 T
—j 50 dt
T—)oo 2T it

L
= L qs001]
T—o>w 2T
= 50

Example : Let X (t) = Acoswt+Bsinat be a random process where A and B are random

variables with E(A)=E(B)=0, [E(A)T:[E(B)]2 and E(AB)=0. Prove that {X(t)} is

mean ergodic.
Given E(A)=E(B)=0, [E(A)] =[E(B)] =¢®, E(AB)=0

E(X (t))= E(Acosat + Bsin at)
=E(A)coswt+E(B)sinat

=0
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— Lt 1
X, = — X (t) dt
T Toow 2T IT (1)

Lt 1 )
_ el I (Acosat +Bsinat) dt
T—ow 2T 2

Lt :
- é J' coswt dt
T T §

_u é[sinaﬁ}
Tow T w

=0
Since ensembled mean and time average mean are equal, {X (t)} is mean ergodic.

Example : If the WSS process {x (t)} is given by X (t)=10cos(100t + ), where ¢ is uniformly
distributed over (-, ). Prove that {x (t)} is correlation ergodic.

Since @ is uniformly distributed over (—z, ), f ()= ZL —r<0<rm
Vs

We know that R, (t,t,)= E{X (t)-X (tz)}

= E[ (10cos(100t, +6))(10cos(100t, +6)) |

_100
2

=50 E[ cos(100(t, +t,) +26)+cos(100(t, ~t,)) |

E[ cos(100t, + 6 +100t, + &)+ cos(100t, + 6 —100t, - 6) |

=50 E[ cos(100(t, +t,)+20) | +50c0s(100(t, ~t, ))

E[ cos(100(t, +1,)+20) | = j cos(100(t, +t,)+20)- f (6) d@

VA

= 2 [ cos(100(t, +t,)+20) d6

2r
2 [sin(100(t, +t,)+26) |
Cox 2 i

1. :
= g[smloo(tl+t2)—sm100(tl+t2)]

=0

Therefore Ry, (t,, t,) =50c0s(100(t, —t,)) ------(1)



Z; =— [ (10cos(100t, +6))(10cos(100t, +0)) dit

_ % [ (cos(100t, + 6))(cos(100t, + 6))

)
_ 100 [ cos(100t, +9+100t, + )+ cos(100t, +&—100t, - &) dit

2x2T *,

.
= ? cos(100(t, +t,)+26)+cos100(t, —t, ) dt

-T

T

- ? I cos(100(t, +t,)+26) dt +$(2T)cosloo(t1 ~t,)

Lt Lt 25 Lt
Z = | cos(100(t, +t,)+20) dt+_|__)0050c05100(t1—t2)

Now

Tow | TowT

=50c0s100(t, —t,).....(2)

Lt 1 |
From (1) and (2), we have Ry (t,,t,)= =[x
T

Therefore {X (t)} is correlation ergodic.
Poisson Process

If X (t) represents number of occurrences ofan eventin (0, t) then the random process is {X (t)}

said to be Poisson process if the following postulates are satisfied.
Postulates of Poisson process.
If X (t) represents the number of occurrences of an eventin (0, t) then
Probability of [1 occurrence in (t, t+At)]= At
Probability of [ 0 occurrence in (t, t+At)]=1-AAt
Probability of [ 2 or more occurrences in (t,t+At)]=0

X (t) isindependent at any interval

Probability Law for Poisson Process

The probability law for Poisson process is given by P[X (t)= n] =——2  n=01...
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Mean and Variance of Poisson Process

E[X ()] = X n-P[x(1)]

et v (A
nZ:;‘ (n-1)!
i {(m)l (at)° (M)3+ }
: - e

= At
E[X*(t)] = ﬁ; n*-P[X(t)]
=n§(‘1 [n(n-1)+1]- P[X(t)]
Zi n(n—l)-e At (M)ani € 2(At)
aw ()]
=e Z_O“ (n—2)!+ At
o {w)z (1), (a)*, }M
1 1! 21 7
_ it o[y, (A1) (A7
=e (A1) {1+ 1 o1 +on. }+M

e "' (A1)’ et + At

= (A1) + At
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var[ X (1)] =E[x*(t)]-{E[x ()]}
= (1) + 2t - (A1)°
= At
Autocorrelation of Poisson Process
By definition R, (t,t,)=E{X(t)-X(t,)}
= E{X(t,)-(X (t,) =X (t,))+ X (t,)}
=E[ X (t,) ] E(X (t,)= X (t,))+ E{X°(t,)}
=t -A(t,—t)+ (1), where t, >t,
= A%t — A%+ A%+ At
=+ A, if >t
=A%, +Amin(t, t,)

Properties of Poisson Process

i. Poisson process is Markov process

ii. Sum of two independent Poisson processes is Poisson processes

Proof: Let X(t), Y(t) be two independent random processes with parameter A and u
respectively and let Z(t)= X (t)+Y (t)

P[Z(t)=n] =§ P[X(t)=k]-P[Z(t)=n-k]

v et (at) e ()™

"2 T (n—k)!

gt & n!

Tl ; k!(n—k)!'(/u)n(“t)n_k

o (e [(ﬂ, + ﬂ)t:ln
n!

Hence Z (t) is a Poisson process with parameter (4 + ).
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iii. Difference of two independent Poisson processes is not a Poisson processes

Proof: Let X(t), Y(t) be two independent random processes with parameter A and u
respectively and let Z(t)= X (t)-Y (t)

E[z()]=E[X(1)-Y (V)]
- A(0)-u(t)
~(2-)(0)

Also E[27(t) |= E[ X*(t)+Y*(t)=2X ()Y (1) ]
=E[X*(t) ]+ E[Y*(t) |- 2E[ X (1) (1)]
= (A1) "+ At+(ut) "+ pt—22t ut
= (A+p)t+{ (2= )]

Here £[2(t)] is not of the form (A-p)t+[(A-u)t] .

Hence Z(t) is nota Poisson process with parameter (Z—,u).

Note: If the number of occurrence of an event in an interval of length t is a Poisson process with
parameter A and if each occurrence of the event has a constant probability, then the number N (t)

of the recorded occurrences in t is also Poisson process with parameter Ap.
. e ™ (Apt)"
ie. P[N (t)= n] TE— n=0,1 ...

Example: An office receives 3 calls per minute on an average and it follows Poisson
process. What is the probability of receiving (a) no calls in a one minute interval (b) at
most 3 calls in a 5 minute interval?.

e *(at)"

Given A =3 / min. Probability law for Poisson process is P[X(t)=n]= '
n:

a. Probability of receiving no calls (n=0) in a one minute interval (t=1)

e (3)°
0!

-3

P[X(@)=0]= = e

ii. Probability of receiving at most 3 calls (n <3) in a five minute interval (t =5)

P[X(5) <3 ]

P[X(5)=0] + P[X(5)=1] + P[X(5)=2] + P[X(5)=3]

e ™ (15)° L e° (15 )’ e (15)° e ™ (15)
=20 2 )

1!

+ +
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2 3
et 14154 B0
2 6

Example: A radioactive source emits particles at a rate of 5 per minute according to a
Poisson process. Each particle emitted has a probability 0.6 of being recorded. Find the
probability that 10 particles are recorded in a 4 minute period.

Given L =5/min Probability of recording p=0.6

—-Apt n
Probability law for Poisson process is P[X(t)=n] :w
n:

i. Probability of recording 10 particles (n=10) in four minute interval (t = 4)

e 2 (12)"

P[X(4)=10]= 101

= 0.104

Example . If customers arrive at a counter in accordance with Poisson process with a mean
rate of 2 per minute, find the probability that the interval between 2 consecutive arrivals is
(a) more than 1 minute (b) between 1 minute and 2 minute and (c) 4 minute or less.

Let T be the random variable denoting inter arrival time. By a property it follows exponential
distribution. Therefore f(t)=4e ™ =2e™, 0<t<oo.

© -2t 7%
(@) P(T >1):j 2e dt = z{e—z} =e”?=0.1353
1

1 —

2 2t P
(b) P(1<T<2):j 2™ dtzz{e—} =—e*+e?=0.1169

1 e

4 2t
(b) P(T <4):j 2e% dt = z{e—z} =—e°+1=0.9996

0 < o
Markov Process

A random process in which the future value depends only on the present value and not on the past
values, is called a Markov process.

Results

o Ifforall n, P(X,=a,/X, ;=8 X\, =8, ... Xq=8)=P(X,=a,/X,_,=2a,,)
e The process (Xn 'n=0,1 2,....) is called a Markov chain and a,, a,, a,, ..., a, are called
states of the Markov chain

) P(Xn =a;/ X, ;= ai) is called the one step transition probability from state a; to state &,

in the n" step.

e The conditional probability P(Xn =a;/ X, :ai)z Pij(”) is called the n step transition

probability.
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e p©-= ( p@, p0 pl L p@ ) is called the initial probability distribution where
P = p[X, =1], p” = p[ X, =2]..ccc... are the initial probabilities for states 1,2,3,....

Definitions

If P is the transition probability matrix of a homogeneous Markov chain, then the n step tpm P®™
isequalto P". i.e. [pi(j"’] - [ o ]n .

A stochastic matrix P is said to be regular if all the entries of P™ are positive for some positive
integer m. Also a homogeneous Markov chain is regular if its tpm is regular.

If P is the tpm of the regular chain and 7 is the steady state distribution, then 7P =7r.

If for every i, j, we can find some n such that pi(j”) >0, then every state can be reached from every

other state and the Markov chain is said to be irreducible. Otherwise it is reducible.

The state i if a Markov chain is called a return state, if p{” >0 for some n>1.

The period of a return state is the GCD of all m such that p{™ >0.

The probability that the chain returns to state i, having started from state i for the first time at the
n" step is denoted by f” and is called the first return time probability.

If Z f{” =1, the return state i is said to be persistent or recurrent. Otherwise it is said to be

transient.

Let s, => n-f{". If 4, is finite, the state i is non-null persistent, otherwise it is null persistent.

A non-null persistent and a periodic state are called ergodic.

If a Morkov chain is irreducible, all state are of the same type.

Example: The transition probability matrix of a Markov chain with three states 0, 1, 2 is

and the initial state distribution of the chainis p[X,=i]==, i=0,1 2..

O Nk DMNlW
W

DWW NP NP

Find (i) p[X,=2] (i) p[Xs=1 X,=2 X,=1 X,=2] (i) p[X,=1 X,=0]
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State Xn State Xn

Given 01 2 0 1 2
31, 5 5 1

4 4 8 16 6

P =state X, 4 l E E and P® =P? =stae X i E i

2 2 4 16 16 16

g 31 3 9 4

4 4 16 16 16

By the definition of conditional probability
(i) p[X,=2]= D p[X,=21 X, =i]-p[ X, =i]
:p[ X, =21 XO=O]-p[ XO=0]+p[X2:2/ X0=1]-p[XO :l]+p[X2:2/ x0:3]'p[x0:3]

=p& - p[ X, =0]+p? - p[ X, =1]+ p2 - p[ X, =3]

- +

Wl

Wik
= EN

Wl
& | w

L
16
1
6

(i) p[Xs=1 X, =2, X, =1, X,=2]

= p[X;=1/X, =2]-p[X, =2/ X, =1]- p[X, =1/ X, =2] p[ X, =2]

=p% - P P - p[ Xo =2]

Example: A house wife buys 3 Kinds of cereals A, B and C. She never buys the same cereal
In Successive weeks. If she buys cereal A, the next day she buys B. However if she buys B
Or C, the next week she is 3 times as likely to buy A as the other cereal. In the long run, how
often does she buy each of the three cereals?

The transition probability matrix of the process is
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A B C

A(O 1 0
P=B [3/4 0 1/4
C (3/4 1/4 0

Let 7 :(ﬂl T, ﬂg) be the steady state distribution of the Markov chain.

Then
o 1 O
(7, =, m3) |34 0 14| = (= =, =)
3/4 1/4 0
3 3
07rl+zﬂ2+z7r3:7z'l ——————— (1)
17z1+07r2+%7r3:7r2 ——————— (2)
1
07rl+z7r2+07r3:7z3 ——————— (3)
and 7@ + 7, + 7, =1 ——————— (4)
Solving (1), (2). (). (4) ,weget 7 = 22, 7 = 22 @ = =

35 27 35 35
.. In the long run, probability of buying A =15/35
.. In the long run, probability of buying B =16/35
.. In the long run, probability of buying C =4/35

Example: The probability of a dry day following a rainy day is 1/3 and that the probability
of a rainy day following a dry day is 1/2. Given that May 1stis a dry day. Find the
probability that May 3rd is a dry day and also May 5t is a dry day.

Here the states are Dry day(0) and Rainy day(1).

Given that B, :% and B, = % Therefore the t.p.m is

M2 M3
0 1 0 1
0|1/2 1/2 5 0(5/12 7/12
P=M1 P*=M2
111/3 2/3 1|/7/18 11/18
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M 4 M5

0 1 0 1
e _ 0129/72 43/72 Pt — M4 0|173/432 259/ 432
- 1/43/108 65/108 - 1]259/648 389/648
Probability for May 3 is a dry day is P2 = %
- . . o 173
Probability for May 5 is a dry day is P’ = 132

Example: Consider a Markov chain having the transition probability matrix

0 0 1
P=| 1 0 O
1/2 1/2 0

a. Show that the chain is irreducible b. Find the stationary distribution

The transition probability matrix of the process is

o

A(O 0 1
P=B | 1 0 O

Let 77:(771 T, 7[3) be the steady state distribution of the Markov chain.

Then

0 0 1
(”1 T ”3) 1 0 0 :(”1 T ”3)

1/2 1/2 0

1

07r1+7r2+§7r3=7r1 ——————— (1)
07r1+072'2+%7r3=7r2 ——————— (2)
1z, +07xn, + 0y, = 715 ——————— (3)
and 7 + 7, + 7 =1 ——————— (4)
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Solving (1), (2), (3), (4) ,we get =, = é, T, = é, Ty = é

.. In the long run, probability of buying A =15/35
.. In the long run, probability of buying B =16/35

.. In the long run, probability of buying C =4/35

1/2 1/2 0 1/2 0 1/2
PP=| 0 0 1 P*=(1/2 1/2 O
1/2 0 1/2 1/4 1/4 1/2
1/4 1/4 1/2 1/2 1/4 1/4
P*=[1/2 0 1/2 PS=|1/4 1/4 1/2
1/2 1/4 1/4 3/8 1/8 1/2

Since all P;; > 0 for some i, ] and each state is reachable from the other state, the chain

is irreducible.

Example . There are 2 white marbles in Uurn A and 3 red marbles in urn B. At each step of
the process, a marble is selected from each urn and the 2 marbles selected are interchanged.
The state of the related Markov chain is the number of red marbles in urn A after the
interchange. What is the probability that there are 2 red marbles in urn A after 3 steps? In
the long run, what the probability that there are 2 red marbles in urn A?

The Markov chain {X 1 has state space 0, 1, 2 since the number of marbles in urn A is always 2 and

the number of red marbles may be 0,1,2.

The t.p.m of the chain is

N

-
Il
—_~
P
A —
)
o
.:U
wJ ,;'U SO0 N

N

If X,=0 ie,ifthe systemisatstate 0. Urn A contains 2 while marbles and urn B contains 3 red

marbles
After one interchange, urn A has no red marbles, which is not true. Then P, =0

After one interchange, urn A definitely contains 1 red marbles. .. B, =1
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After one interchange, urn A definitely contains 2 red marbles. .. B, =0

If X, =1 i.e, ifthe system is at state 1, urn A contains 1 red and 1 white and urn B contains 1 White
and 2 Red marbles.

Po=P(X,.=1/X,=0)= %x% :% (one red at Urn A becomes no red after interchange )
2.1 1 :
P,=P(X,,=2/X,=1)= §X§ =3 (one red at Urn A becomes two red after interchange )
. 11 1
But B,+P,+P,=1. .. B,=1-RB,-PR, :1_6_5 =5 (one red at urn A becomes one red after

interchange )

If X, =2 i.e., if the system is at state 2, urn A contains 2 red and urn B contains 2 White and 1 Red
marbles.
After one interchange, urn A definitely contains 0 red marbles. .. P,, =0

Py=P(X,.=1/X,=2)= g>< 2_2 (two red at Urn A becomes one red after interchange )
32 3

But Py+P,,+P,=1. .. R,=1-PR,, —P, =1—§—0 = % (two red at urn A becomes two red after

interchange )

0 1 0
1 1 1
Therefore the tpmis P=| - = =
p-m 6 2 3
2 1
0 J— —_
3 3
T 0 1 2 . ..
The initial distribution is P(O):(l 0 0 (There is no red marble initially, and it is sure event)
0 10
PO—pop=(1 0 0) = 1 1l-(0 1 0
6 2 3
2 1
O i —_
3 3
010
P(Z)zP(l)P:(O 1 0) l l E = 1 1 E
6 2 3 6
2 1
0 i —_
3 3
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Therefore P(2 red marbles in urn A after 3 interchanges) :%

The long run probability is limiting probability.

Let 7 = (7[0 ) ﬂz) where 7, + 7z +7m,=1------ @

Also 7P =r gives

0 1 0
1 1 1
(7 m 1) 5 3 3| " (7 m 1)
0 21
3 3

0z, -I-%ﬂ'l +0m, =7, (2)
1 2
17z0+§7z1+§7r2=7zl ----- (3)

1 1
07r0+§7z1+§7r2=712 ---- 4

Solving (1), (2), (3), (4) , we get 7, = 1i = g, =

Therefore P(2 red marbles in urn A after long run of interchanges) =%
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Exercise

1. Show that the process X (t)= AcosAt+ Bsin it where A and B are random variables, is wide

sense stationary process if E(A)=E(B)=E(AB)=0 and E (Az) =E ( Bz) )

2. Customers arrive at a bank according to Poisson process with a mean rate of 3 per minute.
Find the probability that during a time interval of 2 minutes (i) exactly 4 customers arrive

(ii) less than 4 customers arrive (iii) more than 4 customers arrive.

3. Two boys and two girls are throwing a ball one to the other. Each boys throws the ball to the
other boy with probability 0.5 and to each girl with probability 0.25. On the other hand each girls

throws the ball to each boy with probability 0.5 and never to the other girl. In the long run, how
often does each receive the ball?

ANSWERS
1. E(X(t))=0, Ry (t,t,)=2cosA(t,—t,)

2. (i) 0.1338 (i) e °[1+6+18+36] (iii))1—e °[1+6-+18+36]

3 (1111
"~ 3'3'6" 6
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Unit-IV Vector Spaces

Introduction

Linear algebra helps to design and analyze MIMO systems used in wireless communication
to increase data rates and transmission reliability. MIMO channels are modeled as matrices
where each entry represents a signal path. It is used in control systems for state-space
modeling, where the system is described using matrix equations to analyze stability and
system dynamics. It is also a foundational in coding theory for error correction in digital
communication systems. The main topics in linear algebra is vector spaces.

In engineering, a vector is characterized by two quantities (length and direction) and is
represented by a directed line segment. A vector in the plane is represented geometrically by a
directed line segment whose initial point is the origin (0, 0) and whose terminal point is the point

(%, %, )- This vector is represented by the ordered X =(x,,X, ), the pair represented its terminal
point.
Note:

e Vectors are denoted by lower case letters in bold type.

e Co-ordinates X, and X, are called components of the vector X.

e Two vectors X:(xl,xz) and y:(yl,yz) are equal if X, =X, and y, =Y,.

Standard Operations on Vectors

Vector Addition: To add two vectors X=(x,x,) and y=(y,,y,) in the plane, add their
corresponding components. i.e, X+Y =(x,%)+(V,¥,)=(X+Y, , X, +Y,)-

Note:
e The difference of X and Y is defined as X—Yy =X+(—Y).

e Thevector —V is called the negative of Y.

Scalar Multiplication: To multiply a vector X =(x,,x,) by a scalar C, multiply each of

the components of the vector by C.i.e, CX=C(x,,X,)=(Cx,Cx,).

Note:
e forascalar C,the vector CX will be |C| times as long as X.

e If C is positive, then CX and X have the same direction.

e If C isnegative, then CX and X have opposite directions.

https://doi.org/10.5281/zenodo.15090328
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Example: If x=(3, 4) and y=(2, -3) find (i) X-y

1
X (iii) X+§y

N |~

(i)

(i) X=y=X+(-Y)=(3 4)+(-2,3)=(3-2,4+3)=(1, 7)

oo

1

N |-

(i)

(iii) X+% y=(34)+5(-23)=( 4)+(—11 gj:(3‘1’ 4+gj:(2’ 1_21j

Properties of Vector Operations

Let X, Y and Z be vectors in the plane and let & and S be scalars. Then

Closure under addition

X+ Y is avector in the plane

Commutative property of addition
X+Yy=Yy+X

Associative property under addition

(X+Y)+Z=X+(y+2)

Additive Identity
X+0=X

Additive Inverse

X+(—X)=0

Closure under scalar multiplication

a X is avector in the plane

Distributive Property
a(X+y)=ax+ay

Distributive Property
(a+f)x=ax+fXx

Associative property of multiplication

() x=a(x)

Multiplicative Identity
1(X)=x

Additive inverse is unique
If X+Y=0,then X=-Yy

Additive Identity is unique
If X+Y=X,then y=0

0X= 0 (first one scalar zero, next one vector 050 = O
Zero)
If aX=0, then ¢=0(scalar) or X=0 | —(=X)=X

(vector)
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Note: The proof of each property is a direct application of the definition of vector addition
and scalar multiplication combined with the corresponding properties of addition and
multiplication of real numbers.

For example, Consider For example, Consider
0=0X+(-0X) 0=00+(-20)
=(0+0)X+(-0X) - 2(0+0)+(-a0)
- 0X+0X+(-0X) a0+ a0+(-a0)
=0X+(0X+(-0X)) :a0+(a0+(—a0))
f8§+0 _00+0
B =0

Cancellation Law for vector addition: If X, Y and Z are vectors in a vector space V
such that X+Z=Y+Z then X=Y.

Given X+Z=Y+1Z
We know that for any vector Z in V there exists a vector W inV such that Z+W=0.
Also by additive property X=X+0
=X+(Z+W)
=(X+2)+W
=(y+2z)+w
=Y+(Z+W)
=y+0
=Y
Vectorsin R".

Like the vectors defined in the plane R? (2-space), we can define the vectors in other
spaces also.
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The vectors in R (3-space) is of the form X =(x, x,, X;)
The vectors in R* (4-space) is of the form X =(X, Xp» X3 Xy

In the same way, the vectors in R" (N -space) is of the form X =(x, X, ------ X,)
Note: The vector operations and its properties remain holds good in the above spaces also.

Example: Let X=(3,4,1), y=(-2,0,1) and Z=(0,-3,4) be vectors in R*. Solve for X if
X+y=2Z—X.
2X=27—-Y
1
X==(22—-
5(22-Y)

x=%(2(o,—3,4)—(—2,0,1))

X= %((0,—6,8)+(2,0, -1))

X:%(O+2,—6+0,8—1)

1
X==(2,-6,7
~(2-6.7)
7
X:(l, _3,_j
2
Definition: A vector X is said to be a linear combination of the vectors X, X,, ----- X, if it
can be expressed as the sum of scalar multiples of the vectors. i.e.

X=0X + 0 X+ oeeee +a.X, .

Example: Show that X=(10,1,4) is a linear combination of the vectors
u=(2,35),v=(124) and w=(-2,2,3).

Since X is a linear combination of the vectors u, v and W then there exists constants &, b
and C such that X=au + bv + cw.

Therefore (10,1, 4)=a(2, 3,5) + b(1, 2, 4) +c(-2, 2, 3)
Equating the corresponding components, we get
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2a+1b—-2c=10
3a+2b+2c=1
5a+4b+3c=4

Solving the simultaneous equations, we have a =1, b=2¢=-3

Therefore X can be written as a linear combination of u, v, w as X=U + 2V — 3w.

Example: If X=(-1,—2-2) is a linear combination of the vectors u=(0,1,4), v=(-112)
and w=(3,1,2) find the scalars &, b and C.

Given that X=au + bv + cw

Therefore (-1,-2—2)=a(0,1,4)+b(-112)+c(3,12)
Equating the corresponding components, we get

Oa-1b+3c=-1
la+1lb+1c=-2
da+2b+2c=-2

Solving the simultaneous equations (by Crammer’s rule), we have a=1,b=-2,c=-1

Therefore X can be written as a linear combination of u, v, w as X=U — 2V — W,

Example: [s the vector (11) a linear
combination of the vectors (1,2) and
(—2,-4)?

Suppose the vector (1,1) a linear
combination of the vectors (1,2) and
(—2,—4). Then

(L1)=a(1,2)+b(-2,4)

Equating the corresponding
components, we get

a-2b=1

2a—4b=1

Since the equations are inconsistent, it
has no solution and hence (1,1) is not a

linear combination of the given vectors.

Try this: Is the vector (11) a linear
combination of the vectors (1,2) and
(2,1)?

The vectors (1,2) and (—2,—4) form a straight

line. So any combination of these two vectors
lies on the same line only. But (1,1) is lying

away from the line. Therefore it is not the scalar
multiple of the given vectors.
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Let us recall the following rules in solving the system of equations in matrices

AX=0
|Al#0

Trivial Solution - Independent

[r(A) =3=no. of vectors]

AX=B
|A]#0
Non trivial Solution - Unique

[r(A) =3=no. of vectors}

AX=0
|A|=0

Non trivial Solution - Dependent

[r(A) =2 < no. of vectors}

AX=B
|A[=0
No Solution

[r(A) =2< no. of vectors}

Vector Spaces

Definition:

Let Vv be a set of vectors together with vector addition and scalar

multiplication. Then Vv is said to be a vector space if it satisfies the following conditions for

all X, Y, WeV and any scalars a, feR.,

Vector Addition

Scalar Multiplication

X+VYisinv

aX isinvVv

X+Y=Y+X (commutative law)

a(X+y)=ax+ay

(X+Y)+Z=X+(y+2Z) (associative law)

(a+ B)x=ax+ pX

Forall XeV there exists a unique OeV
such that X+0=X (additive identity)

() x=a(fx)

Forall XeV there exists a unique Y eV,
denoted by Y =—X, such that X+Yy=0
(additive inverse)

1(X) = X (scalar identity)

Example:

e The set of all ordered pairs of real numbers R? with the standard operations is a

vector space.
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e The set of all ordered N -tuples of real numbers R" with the standard operations is
a vector space

e The set of all mMxN matrices with the operations of matrix addition and scalar
multiplication is a vector space.

e The set of all polynomials of degree 2 or less is a vector space.

Note:
e The set of second degree polynomials is not a vector space. Because if
p(x) =x*—-2x+3, q(x)=—x*>—-2x+3 then p(X)+q(X)=—4x+6 whichisnota
second degree polynomial.
e Consider the set of all ordered pairs of real numbers, with the scalar multiplication

as a(x,x,)=(0,ax,). Itis nota vector space because 1(1,1) =(0,1) = (1,1).

. : 1 . .
e The set of integers is not a vector space because 5(5) is not an integer

Try this: Are these sets a vector space? (i) The set of 2x2 all singular matrices with the
standard operations (ii) The set of all 2x2 diagonal matrices with the standard
operations.

Example: Show that V :{a+b\/§ ' a, beQ} is a vector space over Q under usual

addition and scalar multiplication.

Let V, =a,+b~/2, V,=a,+b,\2, V,=a,+b,\/2 where a, b, a,, b, a,, b, Q.
(i) V1+V2=(a1+b1\/§)+(a2+b2\/§)=((a1+a2)+(b1+b2)\/§):<kl+k2\/§)ev
(ii) V1+V2:(a1+b1\/§)+(a2+b2\/§):(a2+b2\/§)+(a1+b1\/§)=vz+vl

(iii) V,+V, :(a1 +bl\/§)+(a2 +b2\/§)=((a1+a2)+(bl+b2)\/§)
V, +V, =(a2 +b2\/§)+(a3 +b3\/§):((a2 +a3)+(b2+b3)\/§)
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(Vi +V,)+V, =[(a1+b1«/§)+(a2+b2«/§ﬂ+(a3+b3«/§)
=((a1+a2)+(bl+b2)ﬁ)+(a3+b3J§)

((a1+a2+a3)+(bl+b2+b3)\/§)

V,+(V, +V3):(a1+b1«/§)+[(a2+b2«/§)+(a3+b3«/§)}
(a1+b1«/§)+((a2+a3)+(b2+b3)«/§)

((a+a,+a;)+(b+b, +b,)2)
(iv) V,+0=(a+bv2)+(0+0v2)=((a+0)+(b+0)v2)=(a +b2)=V,
(v) LetV,=a +b~2 and -V,=-a,-b2.
Vi+ (V1) = (2 +bv2 )+ (-2 —biv2) = (2 —2)) +(B, -b)¥2) = (0+0¥2) =0V
i) oV, =a(a+b2)=(aa +ab2)ev
(vii) a(Vl+V2)=a[(a1+bl\/§)+<a2+b2\/§)}=[a(a1+b1\/§)+a(a2+b2\/§)]=avl+avz
wii)) (a+B)V, =(a+B)(a+bV2)=((a+B)a+(a+B)b2)eV
aV, = a(a +bv2)=(aa +ab2)eV and V= B(a +b2)=(Ba,+po2) eV
N, + N, = (ad, + at2) +( Ba + p2) = ((+ B)a +(a+ )b2)
(ix) oV =ap(a+b2)=(apa +apb2)
a (V) =a(Ba+po2)=(apa +apb2)
(x) Let1beascalar. Then 1.V, =1-(a +b+/2)=(1-3, +1:0v2) = (a +bv2) =V,

Since all the conditions are satisfied, V is a vector space.

Example: Show V = {(X, y)eR?:y= ZX} that a vector space.
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Let U=(x,2x), V=(p,2p), W=(m,2m)eV and &, S €R are any scalars.

(i) U+V=(x2x)+(p,2p)=(x+p, 2x+2p) =(X+ p, 2(x+ p))eV

(ii) U+V=(x,2x)+(p,2p)=(x+p, 2x+2p)=(p+X, 2p+2x)=(p,2p)+(x,2x)=V+U

(i)  U+V=(x2x)+(p,2p)=(x+p, 2x+2p)
V+W=(p,2p)+(m,2m)=(p+m, 2p+2m)

(U+Vv)+w

(x+p, 2x+2p)+(m,2m)
=(x+p+m, 2x+2p+2m)
U+(V+W)=(x2x)+(p+m, 2p+2m)
=(X+p+m, 2x+2p+2m)
(iv) Let u=(x2x),0=(0,0)eV. Here
U +0=(x,2x)+(0, 0)=(x+0, 2x+0) =(x,2x)=U
(v) Letu=(x 2x)eV andlet —U=(-x,—2x)eV . Now
U +(—U) =(x,2x) + (=%, —2x) = (x—x, 2x—2x) =(0,0)=0.
V) au=a(x2x)=(ax2ax)eV
wii)  a(U+V)=al(x2x)+(p.2p)]=a(x+p, 2x+2p)=(ax+ap, 2ax+2ap)=(ax+ap, 2(ax+c
oU+aV =a(x,2x)+a(p,2p) =(ax 2ax)+(ap,2ap)=(ax+ap, 2(ax+ap))
(viil)  (a+p)Uu=(a+p)(x.2x)=((a+B)x, (a+B)2x)=(ax+BX, 2ax+2BX)
ol + BU = (%, 2X)+ B(X,2X) = (aX, 2ax)+(BX, 23X) = (ax+ X, 20x+2X)

i) (af)u=(af)(x.2x)=(apx, 2apX)

(o) fu=(a)B(x.2x)=(ax)(Bx 28x)=(apfX, 2af3X)
(x)  Let1beascalar. Then 1U=1(x,2x)=(x,2x)=U

Since all the conditions are satisfied, Vv is a vector space.

a
Example: Show that the set of all 2x2 matrices of the form (

b
] with the standard
c O

operations is a vector space.
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a
Let v = the set of all 2x2 matrices of the form (

b
Oj with the standard operations
c

matrix addition and scalar multiplication.

Let x=[2 P d el 7 (9 Mevand @ B 1
= y = ' = . an y are any scalars.
¢ o/ Y7t o i 0/ y

0 N4V = ab . d e B a+d b+e Y
y= c 0) \f o) letf o0 )°
(ii) X+ (a b N d e B a+d b+e B d+a e+b B d e a b__ 4y
Y=le oflf 0)7lest o0 JTlfsc o )7\f o)flc o)
(i) X+y=- a b+_d e a+d b+e
y= c 0) | f 0) le+f O
t7o d e4_g hy (d+g e+h
Y¥2=1 o/"li o)7L+ o

_(a+d b+e g h
(X+y)+z_(c+f o]+(i oj

_£a+d+g b+e+hj

c+ f+i 0
a b d+g e+h
X+(y+z):(c oj+[f+i 0 j

_(a+d+g b+e+h
o+ f i 0

a b 00 0 0
(iv) Let X= ,0= . Here X+0=X. But 0= ¢V (condition
c 0 00 0 0

fails).

(a b _(-a 00
(v) Let X—(C OjeV then —X—(_C 0 jeV. Now X+(—X):{O OJ
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_ (a b} (aa abj
(vij oX=«a = eV
c O ac 0
) a b d e a+d b+e aa+ad
(vii) O‘(X+y):0{(c O}L(f OJ]:O{c+f 0 }:[“‘H“f
X4 OV aa ab ad ae B ca+ad ab+ae Vv
y_[ac Oj{af OJ_[“H“‘C 0 je
a b)_((a+p)a (a+p)b)_(aa+fa
(viii) (a+pB)X=(a+p) c 0l (a+p)c 0 - ac+ fic
e ax) - @2 ab) (pa pb) (ea+pa ab+fb
(aX+5 )‘[ac oj{ﬁc OJ_(aHﬁC 0 )
| ) a b) ((aef)a (aB)b) (apa apb
(ix) (aﬂ)X—(aﬂ)(C 0]_((05,6’)0 0 )_[(Zﬂc Oj
b b
i ) )

(x) Clearly 1X=1,(a bj:(a b}
c O c 0

Since all conditions are satisfied, Vv is a vector space.

below.
(% y)+(p.q)=(x+p+Ly+q+1) and k(x,y)=(kxky)

Let u:(x, y), Vz(p,q), W=(m,n)ev and a, [ are any scalars.
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ab+aeJ
eV

ab +[3b]

Example: Determine whether the set of all pairs of real numbers (x,y) with the
operations (x,y)+(p,q)=(x+p+Ly+qg-+1l)and k(xy)=(kxky) 1s a vector space or
not. If not, list all the axioms that fail to hold.

Let v = the set of all pairs of real numbers (x,y) with the standard operations as given



(1 U+V=(xy)+(p.a)=(x+p+L y+q+1)eV

(i)  u+v=(xy)+(p.a)=(x+p+1 y+q+1)=(p+x+L q+y+1)=(p,q)+(x,y)=V+U

(i)  u+v=(xy)+(p.a)=(x+p+1 y+q+1)
V+W=(p,q)+(mn)=(p+m+1 g+n+1)
(U+V)+W=(x+p+1 y+gq+1)+(m,n)

=(X+p+m+2,y+q+n+2)
U+(V+W)=(xy)+(p+m+1 g+n+1)

=(X+p+m+2,y+q+n+2)

(iv)  Let U=(xy),0=(-1-1)eV. Here
U+0=(xy)+(-L-1)=(x-1+1, y—1+1)=(x,y)=U

(v) Letu=(xy)eV andlet -U=(-x-2,—y-2)eV . Now
U+(—U)=(xy)+(—x—-2,-y—2)=(x—x-2+1 y—y—-2+1)=(-1,-1)=0

(vi) au=a(xy)=(ax,ay)eV

wii) a(U+V)=a[(xy)+(p.a)]=a(x+p+L y+q+l)=(ax+ap+a, ay+aq+a)
au+aV=a(xy)+a(p.q)=(ax,ay)+(ap,aq)=(ax+ap+1, ay+aq+1)

(Vi) (cr+ A)U=(a+ B)(6Y)=((a+ B)x, (a+ B)Y)=(ax+ Bx, ay+ y)

au+pU=a(xy)+pL(xy)=(ax, ay)+(Bx, By)=(ax+px+1 ay+By+1)

i) (af)u=(af)(xy)=(apx aBy)
(o) pu=(a)B(xy)=(x)(Bx BY)=(apx, aBy)

(x)  Letlbeascalar. Then 1U=1(x,y)=(x,y)=U

Here a(U+V)=aU+aV and (a+B)U#al+ LU
Since condition (vii) and (viii) fails, Vv is not a vector space.
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Verify that the set V of all ordered triplets of real numbers of the form (x, y;, z;) and
defined the operations + and - by (i) (X, Yi, Z)+(X,, Yo, Z,)=(X+%, Y1+ Ysr Z+2,),
(ii) c-(x, Y, z)=(cx, ¥y, ;) is a vector space or not.

Verify that the set V of all ordered triplets of real numbers of the form (x,, y;, 0) and
defined the operations + and - by (i) (X, Y5, 0)+(X, Y., 0)=(X+X, Yy +¥,, 0),
(i) c-(x, Y1, 0)=(cx,, cy,, 0) is a vector space or not.

Example: Let V ={(a,, a,): a, a, eR}. Define addition of elements of a, a, coordinate
wise, and for any scalar c, define c(a, a,)=(a,0). Is v a vector space with these

operations? Justify your answer

No. Since 0(a,, @,)=(a,, 0) is the zero vector but this will make the zero vector not be

unique, it cannot be a vector space.

Theorem: In any vector space V , the following statements are true: (i) 0X=0 for each
Xev.

(i) (—a)X=—(aX)=a(-X) for each acR and each XV . (iii) a0=0 for each acR (iv)
aX=0 then a=0or X=0.

(i) Consider 0X+0X=(0+0)X=0X=0X+0=0+0X. Hence by cancellation law 0X=0
for each XeV.

(i) If aX€V then —(aX)€V such that (aX)+[—(axX)]=0.
Consider aX+(-a)X=[a+(-a)|Xx=0x=0.
Comparing, we get (—a)X=—(aX)

Now a(-X)=a[(-1)X]=[a(-1)X]=(-a) X =—(aX)

(iii) Consider a0+al= a(O + O) =a0+0=0+a0. Hence by cancellation law a0 =0 for
eachaeR.

(iv) Suppose aX=0 and a#0. Since a isascalar, @ exists.
Therefore a~ (aX)=a" (0)

(a’a)x=a"(0)
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Mx=0
x=0
Theorem: In any vector space V , the following statements are true: (i) The zero vector is

unique
(ii) The inverse identity is unique.

(i) Let XeV and O 0'eV such that|(ii) Let XeV and Y, Y'€V such that
X+0=X and X+0'=X, vX. X+Y=0 and X+Yy'=0, vX.
Therefore X+0=X+0" Therefore X+Y=X+Y"

0=0" {by cancellation law} Yy =YV' {by cancellation law}

Try this: In any vector space, Is aX=bX implies that a=b?.

Subspaces

Definition: A nonempty subset W of a vector space Vv is called a subspace of Vv if wis a
vector space under the operations of addition and scalar multiplication defined in Vv .

Note: Let vV be a vector space. A subset W of Vv is called a subspace of Vv if it satisfies the
following properties:

e The zero vector of v isalsoin w.

e If Xand Y arein Wthen X+ Y isin w. (W is closed under addition)

e If X isin W and « is a scalar then X is in w. (W is closed under scalar
multiplication)
Note:
e The trivial subspaces of a vector space V are V itself and zero vector.

e The empty set is not a subspace of every vector space. Because any subspace
contains 0.

Example: Let W ={(X, y) eR:y= 2X} . Now W asubspace of V =R’.

Example: Let Vv be the vector space of NxN matrices. Let W be the se of all NxN matrices
whose tr(A)=0. Is W a subspace of V2.
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(i) The zero vector of v is a NxN zero matrix. The trace of this zero matrix is zero.
Therefore zero vector is also in W .
(i) Let A, B are in w. Then tr(A)=a,+a,+-+a,=0 and

tr(B)=by, +b, +----+b,, =0.

Now tr(A+ B):(a11+b11)+(a22+b22)+””+(ann+bnn)

=(ay +ay, +---+a, ) +(by+b, +-- b))
=0+0
=0

Therefore A+ B isin W. i.e. W is closed under addition

(iii) Let a beascalar and consider the matrix & A.

Therefore @A isin W. i.e. W is closed under scalar multiplication

Therefore W is a subspace of Vv .

Example: Show that the set W ={(x,,x,,0);%,X, € R} is a subspace of V = R*with the
standard operations.
1) The zero vector of R’ is (0,0, 0) whichisin w.
(i)  Let U=(x,%,,0),V=(y,,¥,,0)eW .
Now U+V=(x,%,,0)+ (¥, ¥,,0)=(X+ Y, X, +V,,0)eW ie. W isclosed under

addition.

(i) Let a beascalarandlet U=(x,x,,0)eW .

Now aU =a(x,%,,0)=(ax, ax,, 0)eW ie. W is closed under scalar multiplication
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Therefore w is a subspace of Vv .

Example: Show that the set W ={(x,, x,);% =0, x, >0}, with the standard operations, is

not a subspace of V = R,

Let & =—1 be a scalar and let U = (L1)ew .
Now o =-1(1,1)=(-1, -1)gW ie. W is not closed under scalar multiplication

Therefore W is not a subspace of Vv .
Theorem: Intersection of two subspaces of a vector space Vv is also a subspace of Vv .
Let A and B be two subspaces of a vector space V over a field F .
Since A and B be two subspaces 0 A and 0B hence 0e AnB.

Let X, Ye AnB and «, p<eF.

Therefore X, Ye Aand X, YeB.

Therefore X + fYeAand aX+ [YeB. Hence aX+ fYyeAnB.
Hence AN B isasubspaceof v .

Result:

o Let A={(a, 0,0):ae R} and A={(O, b,0):be R} be subspaces of R®. But
(1L 0,0)+(0,1,0)=(L 1, 0)& AUB. Therefore AUB is nota subspace of R®.

e But AUB isasubspace if and only if one is contained in another.

Example: Show that the set w= {(al, a, 8;)eR’:2a,-7a,+a, =1} is not a subspace.

Consider the zero vector (0, 0, 0)eR’
But given that 2a, —7a,+a, =1
2(0)-7(0)+(0) =1

Therefore (0, 0, 0) ¢ W and hence w is not a sub space R®.

Example: Show that the set W= {(a1, a,, a3) eR’:a =3a, a,= —az} is a subspace of R®.
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Consider the zero vector (0, 0, 0)eR®
Here &, =3a,, a,=-4a,
0=3(0), 0=-0

Therefore (0, 0, 0) ew

Let X=(a,, &, 8;), Y=(b, b,, b;) ew. By definition of w, we have
a=3a,, a=-a, and b =3b,, b,=-Db,

Now X+Yy=(a,a, &)+(b, b, b)=(a +b, a +b, a+b)
Here a +b =3a,+3b, and a,+b,=-a,-b,

Therefore X+Yyew

Let ¢ be ascalar and X =(a1, a,, a3) €W. Therefore a, =3a,, a,=-a,.
Consider cx=c(a,, a,, a;)=(ca,, ca,, ca;)

Here ca, =3ca,, ca, =—Ca,

Therefore cx ew and hence w is a sub space R®.

Spanning Sets

Definition: Let S={Vv,, V,, ------ , V,,} be asubset of a vector space v . The set S is called a

spanning set of V if every vector in V can be written as a linear combination of vectors in
S . In such cases it is said that S spans V.

Note:
* Span(S)={aV,+aV,+ - +a,V,} where &, a,, -+ , o, are real numbers.
e If Span(S)=V, itissaid thatV isspannedby S or S spans V.

e The Span(S) isasubspaceofV .

Example: The set S={(1,0,0),(0,10),(0,0,1)} spans R’ because any vector
V=(V,V,,V,) in R’ can be written as V=v,(10,0)+v,(0,1,0)+v;(0,01)=(V,, V,, V;)-

. . n3
Here s is known as standard spanning set of R’ .

139



Example: The set S :{1, X, Xz} spans the set /7, of all polynomials of degree 2 because

any polynomial function

f(x)=a+bx+cx® in

P, be written as

can

f(x)= a(l) +b (X) +C (Xz) =a+bx+cx’. Here S is known as standard spanning set of P,.

Example: Show that the set
s ={(12,3), (0,1,2), (-2,0,1)} spans R’.

p3
Let V=(V,, V,, V,) be any vectorin R’.

We have to find scalars ¢, «,, a; such that
(Vi Vp, Vo) = (1,2,3) + e, (0,1,2) + e, (—2,0,1)
(Vl, V,, V3) :(051 —2a;, 204 + @, , 3oy +2a, +a3)

Equating the components of the vectors, we have

a, +0a, —2a, =V,
20, + 0, +0a; =V,
3o, + 20, +a; =V,

Consider the determinant value of the coefficient
matrix of the system

1 0 -2

2 1 0[=1(1-0)-2(4-3)=-1=0

3 2 1

Hence the system has a unique solution. So,

. p3 ) )
any vector in R’ can be written as a linear
combination of the vectors in S. Therefore the

set S spans Rj.

Or (apply X =A"B tofind &, @,, @, in terms of
Vi, V5, V;)
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Example: Determine whether the set
s ={(123), (0.1,2), (-1,0,1)} spans R’.

_p3
Let V=(V,, V,, V,) be any vector in R’ .

We have to find scalars ¢, «,, a; such that
(Vi Vo, V3) = (1,2,3)+a, (0,1,2)+ ¢, (—1,0,1)
(Vl, V,, V3) :(05l -, 204+, , 3oy +2a, +a3)
Equating the components of the vectors, we have
o, +0a, —a, =V,

20, +a, +0a; =V,

3oy + 20, +a; =V,

Consider the determinant value of the coefficient
matrix of the system

1 0 -
2 1 0
3 2 1

Hence the system has no solution. So, all vectors

1(1-0)-1(4-3)=1-1=0

. D3 ) ) L
in R’ cannot be written as a linear combination
of the vectorsin S. Therefore the set S does not

span R,
Ex: The vector (1,-2,2) in R’ cannot be expressed

as a linear combination of vectors of S.



Linear Dependence and Independence of vectors

Definition: A set of vectors S={v,, V,, ----- , V,} in a vector space Vv is called linearly
independent if the vector equation aV, +a,V, + - +a,V, =0 has the trivial solution
O=a,=" =, =0. If the vector equation has a non trivial solution, then the vectors

are linearly dependent.

Property:
o Ifthevectors S={V,, V,, ----- , V,} are linearly dependent, then some vector can be
expressed as linear combination of other vectors ie.

Vi=aV +aVy+ -t a Vo Vg + o,V

jH1 7 j+1 m "m*
e Itis not true that, if S is alinearly dependent set, then each vector in S is a linear

combination of other vectorsin S.Ex: S ={(1, 0), (2,0), (0,1)}. Here (0,1) cannot

be expressed in terms of the other two.

Note:
e A set consisting of a single non-zero vector is linearly independent.

e Any set containing the zero vector, is linearly dependent.

e The empty set is linearly independent

e A set consisting of two non-zero vectors is linearly independent if and only if neither
of the vectors is a multiple of the other.

e If a set of vectors is linearly independent, any non empty sub set of these vectors is

also linearly independent.
e Consider the set of vectors {V,, V,, ------ .V} in R".If m>n then the vectors are

linearly dependent.

e If m<n then the vectors are linearly independent.

1 4 2
Example: Show that the vectors V,=| 2|, V,=|5| and V, =| 1| are linearly dependent.
3 6 0

Also verify the property.

Consider the vector equation a,V, + a,V, + o, V; =0 . Thatis
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o, +4a,+20,=0
20, +5a, +a,=0
3o, +6a, +0a,=0

To solve the system of equation by Gauss Elimination method, consider the augmented matrix
1 4 20
(A, B) =2 510
36 00

1
=/0 -3 -3 0|R,>R,-2R
0 6 -6 0)R,>R,-3R

1 4 20
=0 -3 -3
0 0 0 0JR,>R,-2R,

o

This [I‘ ( A) =2 < no. of VeCtOFS} implies that the system has an infinite number of solutions.

So, the system must have nontrivial solutions. Let o, =1.

From the second row, -3¢, -3, =0

From the first row, &, +4a, +20,=0

0, =0
a,=-1

o, —4+2=0
o =2

Therefore the vectors are linearly dependent and hence the vector equation becomes
2V, —V,+V, =0
By a property, we have V, = 2V, + V,

4 1 2 2 2 4
5|=2|2|+|1|=|4|+]1|=|5
6 3 0 6 0 6
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0 1 4

Example: Show that the vectors V, =| 1|, V, =| 2 | and V, =| -1 | are linearly independent.

5 8 0
Consider the vector equation &V, +a,V, +o,V; =0 . Thatis
Oc, +1o, +4a,=0
o, +2a,—0a,;=0
Sa, +8a, +00a, =0

To solve the system of equation by Gauss Elimination method, consider the augmented matrix

12 -10
(AB)=|0 1 4 0
58 0 0
1 2 -10
=0 1 4 0

0 2 5 0JR,>R,-5R
12 -10
=01 4 0

0 0 13 0JR,—>R,+2R,

This [Y(A)=3=n0. of VeCtOI’S] implies that the system has unique trivial solution

a, = a, = a,;=0.So, the vectors are linearly independent.

Example: Determine whether the set S ={2—X. 2x— X2, 6—5X+X2} in P, is linearly

independent.
Consider the vector equation a4V, +a,V, +a,V, =0 . Thatis
0, (2= )+, (2x— )+ 5 (6 5%+ X* )= 0+ 0x+ 0x° )
(201, +6a, ) +(—04 + 20, —5a, ) X+ (—at, + @, ) X* = (0+0x+ 0X° )

Equating the corresponding coefficients, we have the system of equations
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20, +6a,=0
—a, +2a,-50,=0

—a,+a;=0
To solve the system of equation by Gauss Elimination method, consider the augmented matrix

2 0 6 0
(AB)=|-1 2 -5 0
0 -1 1 0

2 0 6 0
=|0 4 -4 0|R,>2R,+R
0 -1 1 0

20 6 0
=10 4 -4 0
0 0 0 0JR,>4R,+R,

This [I‘ ( A) =2 < no. of VeCtOFS] implies that the system has an infinite number of solutions.

So, the system must have nontrivial solutions. Let o, =1.

From the second row, 4a, —4a,=0

From the first row, 2¢, +0a, + 60, =0

Therefore the vectors are linearly dependent and hence the vector equation becomes
-3V, +V,+V, =0

1 -1 4 3 1 -8
Example: Determine whether the matrices , , form a linearly
4 5 -2 3) 122 23

independent set.

Consider the vector equation oV, + .V, +,V; =0 . Thatis
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1 - 4 3 1 -8 0 0
a, +a, +a, =
4 5 -2 3 22 23 00

Equating the corresponding elements, we have the system of equations
o, +4o,+a,=0
—a, +3a,—-8a,=0
4o, -2, + 220, =0
Sat, +3a, + 230, =0

To solve the system of equation by Gauss Elimination method, consider the augmented matrix

1 4 1 0
(ap)-| T 3 B0
4 2 20
5 3 23 0
1 4 1 0
0 7 -7 0|R,>R,+R
“|o -18 18 0|R,—>R,~4R
0 -17 18 0)R, >R,-5R,
14 1 0
07 70
|0 0 0 0|R,—7R,+18R,
0 0 7 OJR,—7R,+17R,
14 1 0
07 =70
1o 0 0
00 0

This [r(A)=3=n0. of VeCtOI’S] implies that the system has unique trivial solution

a, = a, = a; =0. So, the vectors are linearly independent.

) 1 -3 2 -3 7 4 -2 3 11
Example: Show that the matrices , , form a
-4 0 5 6 -2 -7 -1 -3 2

linearly dependent setin M, ;.
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Consider the vector equation oV, +&,V, + o, V; =0 . Thatis

1 3 2 -3 7 4 -2 3 11) (0 0 O
a, +a, +a, =
-4 0 5 6 -2 -7 -1 -3 2 00O

Equating the corresponding elements, we have the system of equations

a,—3a,—20,=0
—3a, +7a, +3a, =0
20, +4a, +11a, =0
—4a, +6a, —a, =0
O, —2a, —3a, =0
Sa, —Ta, +2a, =0

To solve the system of equation by Gauss Elimination method, consider the augmented matrix

1 -3 -2
-3 7 3

2 4 1
-4 6 -1

0 -2 3

o O O O O o

R, > R, +3R,
R, » R,—2R,
R, & R, +4R,

O O O O O -
|
o3}
|
©
O O O o o o

R, > R, —-5R,

R, > R, +5R,
R, > R, —3R,
R, >R.—R,
R, > R, +4R,

O O O O o o

O O O O O Bk
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This [I‘ ( A) =2 < no. of vectors] implies that the system has an infinite number of solutions.

So, the system must have nontrivial solutions. Let o, =1.
From the second row, —2¢, —3a,=0
From the first row, ¢, —3a, — 2, =0

a, =30, +2a,

—2a, =3a, 3
—2a, =3 o, =3(—§)+2
3
o, =——= 5
2 2 o =—=

2

.. the vectors are linearly dependent and hence the vector equation becomes
—gvl —gvz +V,=0

ie. OV, +3V, -2V, =0

1 -3 2)(-3 7 4 -2 3 11| . .
Example: Check whether the set : : is linearly
-4 0 5 6 2 —7)\-1 -3 2

dependent or not.

Let «, [, ¥ be the scalars such that
1 -3 2 -3 7 4 -2 3 11 0 00O
a +/p +y =
-4 0 5 6 -2 -7 -1 -3 2 0 0O
Equating the corresponding elements, we have
a-3p-2y=0 —4o+6L—-y=0

-3a+74+3y=0 and Oa-2p-3y=0
20+4p4+11y =0 Sa-T7p+2y=0

Solving, we have o =5, =3, ¥ =—2. Hence the given set is linearly dependent.

Example: Subsets of linearly dependent sets need not be linearly dependent.

Here S :{(1, 0), (2,0), (0,1)} linearly dependent but {(1, 0), (0,1)} is linearly independent.
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Basis and Dimension

Definition: A basis B for a vector space Vv is a linearly independent subset of v that
generates V .

Note:

B Spans V .

A basis may have finite or infinite number of vectors. The set of all polynomials has
no finite basis.

A vector space vV has a basis consisting of a finite number of vectors, then Vv is said
to be finite dimensional.

All bases of v have the same number of vectors.

The empty set is the basis for zero vector space.

If B is the basis for a vector space Vv, then every vector of V can be uniquely
represented as a linear combination of vectors of the basis

If a basis for a vector space V contains k vectors, then any set containing more
than k vectors of v islinearly dependent

Any set containing more vectors than the basis possess, will not be a basis as they
are linearly dependent.

A vector space may have more than one basis. {(1, 0), (0,1)} and {(1 0), (1,1)} are the
bases of R°.

The relationship between the generating set,
linearly independent set and bases is
depicted in the Venn diagram.

Example: Standard basis for the vector space of 2x2 matrices is

(o aho o2 o6 2

Example: ¢ is the basis for the vector space V ={0}, as Span(¢)={0}.
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Example: Check whether the set
B={(10,0), (0,1,0), (0,0,1)} is the basis for

R

Any vector V=(V,, V,, V,) in R’ can be
written as
(V1, V3, V3)=V,(1,0,0)+V, (0,1,0)+V,(0,0,1).

Therefore B spans R,

Clearly the vector equation

oV, +a,V, +a,V; =0 has a solution
o, =a,=0,=0.

Therefore the vectors of B is linearly
independent.

Therefore B is the basis for R3 )

Example: The set
B={(12,3), (0.12), (-2,0,1)} isthe

basis of R~ .

Itis proved that B spans R’ . Refer
above.
Consider the vector equation
oV, +aV,+a,V, =0
o, —20,=0

20, +a,=0

3a, +2a, +a, =0
Solving, we have &, = o, =, =0.

Therefore the vectors of B is linearly
independent.

Therefore B is the basis for RE.

Example: Show that the set B= {(L 0,0), (0,1,0), (LLl)} is the basis for V3(R) )

Consider the vector equation oV, + a,V, + o, V; =0 . Thatis
o, (1, 0, O) +a, (0, 1 O) +a, (l, 1 l)= (0, 0, O)

The system of equations are

o, +0a, +a, =0

Oct, +a, +a,=0

O, +0a, + ;=0

To solve the system of equation by Gauss Elimination method, consider the augmented matrix

1 010

This [Y(A)=3=n0. of VeCtOI’S] implies that the system has unique trivial solution

a, = a,=a;=0.So, the vectors are linearly independent.

To prove the vectors forms the basis, we have to find scalars I, m, n such that
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1(10,0)+m(0,1 0)+n(L 1 1)=(a b, c)

Equating the coefficients, we have (1+n)=a, (m+n)=b, (n)=c.

l+n=a m+n=>hb
Here l+c=a m+c=>b and n=c
l=a-c s.m=b-c

Therefore any vector in V3(R) can be uniquely expressed as a linear combination of

vectors of B. Therefore B spans VS(R).

Try this: Show that the set 8={(1,0,0), (0,1,0), (11,1), (11,0)} spans the vector space

V3 ( R) but is not a basis.

Let B'={(1,0,0),(0,1,0), (L11)}. Since B'c B, then L(B')=V,(R). Thus B’ spans
V3(R). But B’ is linearly dependent, because (1, 1 0):(1, 0, 0)+(0, 1 0). Hence B’ is not
a basis.

Try this: Show that the set B= {(l, 0,0), (11, O)} is linearly independent but not spans the
vector space V3(R).

Try this: Show that the vector space /7, the set of all polynomial functions of degree 2,
has the basis 5 = {1, X, Xz}.

1 2 -1
Example: Consider the vector space V = R? . Let p= ol _; , : . Is B abasis
-2 1 -3

for R4.

Form the matrix

2 -1
-1 4
A=
0 -2 2
2 1 -3
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1 2 -1
0 -7 7 |R,—»>R,-3R
0 -2 2
0 5 -5)R,—»>R,+2R

1 2 4
0 -7 7

0 0 0|R—>7R,—2R,
0 0 0)R,—>7R,+5R,

Here r(A)=2< number of vectors. Hence the vectors are linearly dependent and hence it

cannot form the basis for R*. Note that V, -V, =V,.
Example: Show that the set {1+ 2x+ X%, 3+ X%, X+ Xz} form the basis for the vector space
V = P,, the set of all polynomials function of degree 2.
Let B={1+2x+x", 3+X*, x+ X}
Consider the vector equation a,V, + .V, + , V; =0 . Thatis
051(1+2x+x2)+a2 (3+ x2)+a3(x+ xz):(0+0x+0x2)

(0 +3a, + @)+ (204 +0ar, + o) x+ (04 + @t + ) X* = (0+0x+0x° )
Equating the corresponding coefficients, we have the system of equations
o, +3a,+0,=0
20, +0a, +a, =0

o +a,+o,=0

To solve the system of equation by Gauss Elimination method, consider the augmented matrix

(AB)=

RN R
P O W
o o o

1
1
1
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1 3 1 0
=0 6 -1 0|R,>R,—-2R
0 2 0 0)R,>R,—R
1 3 1 0
=0 -6 -1
0 0 1 0JR,—>3R,-R,

o

This [r ( A) =3=no. of vectors] implies that the system has unique trivial solution
a, = a, = a; =0. So, the vectors are linearly independent.

To prove the vectors forms the basis, we have to find scalars I, m, n such that

(14 2x+ X7 )+ m(3+ X ) +n(x+%* )= (a+bx+cx’)

(1+3m)+ (2 +n)x+(1+m+n)x* =(a+bx+cx’)

Equating the coefficients, we have (1+3m)=a, (21+n)=b, (I+m+n)=c.

Now solving we get |, M, N in terms of &, b, C as

I=%(7a+3b—3c), m=%(—a—b+c), n=%(—14a—2b+60).(tosolveapply X=A"B)

There the set of vectors {1+ 2x+X%, 3+ X7, X+X2} form the basis for the vector space
V=P,

_ 0 1) (1 0) (1 1 11
Example: Show that the matrices 1100 111 o and 01 generate MM(R).

We have the show that the given vectors form the basis for the vector space M,,, (R).

a, 8

i.e. any general matrix (
aZl a22

j of M,,, (R) can be expressed as a linear combination of

the given vectors.

Consider A A -m 01 +n 10 +C 11 +k 11 where M, N, C, K are scalars.
a, a, 11 11 10/ |01

It forms the simultaneous equations, as
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a,=n+c+k
a,=m+c+k
8, =M+n+cC

a,, =m+n+k

1
m :é(_zau"'am +a21+a22)

1
n :§(a11 _2a12 +ay +a22)
Solving, we get

1
ng(a11+a12+azl_zazz)

1
K :g(a11+a12_2a21+a22)

Hence the given vectors generates M,,, (R).

The Dimension of a Vector Space

Definition : If a vector space has a basis consisting of N vectors, then the number n is
called the dimension of v, denoted by dim(V)=n.

Example:

1. The dimension of R" with the standard operations is n.
2. The dimension of /7, with the standard operations is n+1.

3. The dimension of M with the standard operations is mn.

Note:
e A vector space is called finite-dimensional if it has a basis consisting of a finite
number of vectors
e Avector space that is not finite-dimensional is called infinite-dimensional.
e If v consists of the zero vector alone, the dimension of Vv is defined as zero.
Result: If W is a subspace of an N -dimensional vector space V , then the dimension of W is

less than or equal to N.
Example: Determine the dimension of the Example: Determine the dimension of the

sub space W ={(b, a—b, a): a,b e R} of R’. | subspace w = {(3a, a,0): ae R} of R

Given vector can be expressed as Given vector can be expressed as

(3a,a,0)=2a(310)
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(b, a=b, a)=(0, a, a)+(b, —b, 0) Le.w is spanned by the set s ={(3, 1, 0)}

=a(0,1,1)+b(1, -1 0) Clearly the vectors are linearly
i.e. W is spanned by the set independent. (--1<3)
$={(0,11), (1 -1 0)} Therefore s is the basis for w.

Clearly the vectors are linearly independent. | Therefore w is a 1 dimensional subspace
(... 2 < 3) of R .

Therefore S is the basis for w.

Therefore w is a 2 dimensional subspace of

Example: Determine the dimension of the sub space W ={The set of symmetric matrices}
of M,,,.
, , a b a o0 0 b 00
Any symmetric matrix can be expressed as = + +
b ¢ 0 0 b 0) (0 c

10 01 0 0

0 0 10 01
i.e. W is spanned by the set S = ! O, 0 1, 00
0 0)1 0)\0 1

Clearly the vectors are linearly independent. Therefore S is the basis for w.
Therefore W is a 3 dimensional subspace of M,,,.
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EXERCISE

Determine whether the set of vectors s ={(1,2,3), (0,1,2), (-2,0,1)} in R’ is linearly

independent or linearly dependent.
Are the vectors below linearly independent?
s={(8,3,0,-2), (4,11,-4,6), (2,0,1,1), (0,-2,-7,7)}

Determine whether the set S = {1+ Xx—2x%, 2+5x— X, X+ XZ} in /7, is dependent. If
yes, express V, in terms of other vectors.

Determine whether the set B = {(1 1), (1, —1)} is the basis for R’

Determine whether the set {—1— X+2%°, 24+ X—2x%, 1-2x+ 4X2} form the basis for
the vector space V = P, the set of all polynomials function of degree 2.

Determine whether the set {XZ +3x—=2, 2x* +5x -3, - x> —4x+ 4} form the basis for

the vector space V = P,, the set of all polynomials function of degree 2.

a a+b
a+b b

with respect to standard matrix addition and scalar multiplication is a vector space
or not?.

Determine whether the set of all 2x2 matrices of the form ( j, a,beR

Let V=R®and W :{(X, Y, Z) 1 2x=Ty+z :O}. Verify whether W is a subspace or

not.

For what value of k, the vector (1, -2, k) in R® is a liner combination of the
vectors (3, 0, —2) and (2, -1, -5).

ANSWERS

1. Independent 2. Dependent 3. V,=2V,+3V,

4. Yes

5. No 6. Yes 7. Yes 8. Yes 9. k=-8
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Unit-VV Linear Transformation and Inner Product
Spaces

Function Terminologies

Let T:Vv ->W be a map from a vector space vV into a vector space W. Here Vv is called the
domain of T and w is called the codomain of T .

If vev and wew such that T (v) =w then W is called the image of V under T and V
is called preimage of W under T.

The set of all images in W is called the range of T.

Example: For any vector V=(a b) in R?, let T:R? >R? be defined by
T(a, b)=(a+b, a—2b).
(i) Find the image of V=(1, -2). (ii) Find the preimage of wW=(3, 0).

(i) From the definition, T (1, -2) = (1- 2, 1+ 4) = (-1, 5), which is the image.
(ii)  Given that T (a, b) =(3, 0)

(a+b,a-2b)=(3,0)

a+b=3
a-2b=0

Solving these equations, we get a=2, b=1.
Hence the preimage is (2, 1).

Linear Transformations

Definition : Let v and w be vector spaces over F. The function T:v -»W is called a
linear transformation of v into w if the following two properties are true for all U and V
in v and for any scalar C.

() TU+V)=T (U)+T (V) (i) T(cu)=cT (u)

Note:
¢ A linear transformation is said to be operation preserving, because the same result
occurs whether the operations of addition and scalar multiplication are performed
before or after the linear transformation is applied.

https://doi.org/10.5281/zenodo.15090459

123



e Alinear transformation T:v —»V from a vector space into itself is called a linear
operator.

Example: The zero transformation 7:v —»W such that T(V)=0 for all veV and the

identity transformation T:v >V such that T(V)=V for all veV  are linear
transformations.

Example: Show that the function T (a, b) =(a+b, a-2b) is a linear transformation from
R? into R?.

2
let U=(u,, u,) and V=(v, v,) be any two vectors in R and let C be any real number.

Then by definition T (U) =T (uy, uz2) = (U1 +Uz, U1 —2uz).

Also u +V =(ug, Uz )+ (Vv1, v2 ) = (Ur +V1, Uz +V2) and cu =c(us, uz) = (cuy, cuz)

Now T (CU) =T (cuy, cuz )
T (U +V) =T (Ul +V1, Uz +V2)
=(Ccur+cuz , cur—2cuz)

= (v )+ (o) L (U +ve)=2(U, +v,) ) Also =c(Ur+Uz, u1—2uz)
= (UL +V1+Uz2+V2, U1 +Vi—2U2 —2V2) =T ((u,1,))
= (UL +U2+V1+V2, Us —2U2 +V1—2V2) _cT(U)

=(U1 +U2, U1 —2U2) + (V1+V2 , V1—2V2)
Hence T is alinear transformation
=T (U)+T (V)

Try this: Show that the function T (a, b) = (2a-3b, a+4b) is a linear transformation from

R? into R? .

Example: T(X)=SsiNX is not a linear transformation from R into R because, in general
sin(u+v) #=sinu+sinv.

Example: T (X) = X+1 is a linear function in R but it is not a linear transformation from R
into R . Why?

Properties

e T(0)=0. Because T (O) =T (OV) =0T (V) =0
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e T(-V)=-T(V). Because T(-V)=T((-1)V)=(-DT(V)=-T (V)

o TU=V)=T(U)-T(V). Because
TU=V)=TU+(-1)V) =T (W) +(=1)T(V) =T (U)-T (V)
o If V=c\V,+cV,++cV, then

TV)=T(cV,+cV, ++cV,)=cT(V,)+c,T(V,)++cT(V,)

Example: T islinear if and only if T (cX+Yy)=cT(X)+T(y) forall X, YeV andceF.

Suppose T is linear. Conversely, suppose
Then T (cX+Y)=T(cX)+T(Y) T(CX+Y)=cT(X)+T(Y)
=cT(X)+T(Y) Put c=1. Then T (X+Y)=T(X)+T(Y)
Let y=0eV.

T(cx+0)=cT (x)+T(0)

=cT(X)+0
=cT (X)

Example: Let T:R° —R be a linear transformation such that T(1,0,0)=(0,1,2),
T(0.,0)=(1,4,2) and T (0,0,1) = (-1,1,0). Find T (1,-1,3).

Here (1,-1,3). can be written as (1,-1,3)=1(1,0,0)-1(0,1,0)+3(0,0,1). Therefore by the

above property,
T(1,-1,3)=1T(1,0,0)-17(0,1,0)+3T (0,0,1)
=1(0,1,2)-1(1,1,2) +3(-1,1,0)
= (01,2) +(~1,-1,-2) +(-33.0)
= (~43,0)
Note: The properties help us to identify the functions that are not linear transformations.
For example, consider the transformationT (u,, u, ) = (u,, u, -1).

Here T (O, O) = (O, —1) # (0, 0). Therefore T is not linear.
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Matrix Representation of a Linear Transformation

Let A be an mxn matrix. Let T :R">R" be a linear transformation defined by
1(V) =Av where V is an nx1matrix.

By definition, TU+V)=AU+V)=AU+AV=T (U)+T (V) and
T(Cu)=A(cU)=cAU=cT (U)
Therefore T is linear.

Example: Let the linear transformation T :R°>R® is defined as

T(V):AVZ[S (1)](\\;12)

1 -2
\ )

Find T (v) ,where v = (2, -1).

T(V) = AV (33 \( 2= (27‘ Therefore T (2, -1) = (6, 3, 0)

Example: The linear transformation T:R'—>R" is defined by T(V)=Av. Find the

dimensions of R" and r" for the linear transformation represented by the matrix
(1 2 -1 1)

23 3 2

Since the order of this matrix is 2x 4 it defines a linear transformation from R* into R?.

Example: Let the linear transformation T:R*>R’ is defined as T(V)=Av where

1 2\|
A= -2 4.
2 2

Find the image of v=(2, 4). Also find the preimage of W=(-1, 2, 2). Explain why the

vector W= (1,1, 1) has no preimage under this transformation.

Given linear transformation transforms an ordered pair into a triplet i.e.
T(V,v)=(u.,uu)and T*(U,u.,u)=(V,v).
1 2 1 2 3 1 2 3 1 2
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The image of the vector is V given by
T(V)=AV
T (V) W

_2 4w(2\| ( . Therefore T (2, 4)=(10, 12, 4)

Let v=(Vv,,V,) be the preimage of W= (-1, 2, 2). Then by definition,
T(V)=w

121w ()

‘_2 2‘\/2 ’2’
\ J )

—2V1i+4vp =2

—2V1+2vy =2
Solving the above equations, we get V=(V,,V,)=(-1, 0)

To find the preimage for w=(1,1,1).
Then by definition,
T(V)=w

(Ez 4“) ﬂ

= o

vV, +2v, =1
—2Vi+4vy, =1
—2V1i+2vo =1
Since the equations are inconsistent, it has no solution and hence W=(1,1,1) has no

preimage.
Example: Find the matrix of the linear transformation T:v;(R)—>Vs;(R) given by

T(a b, ¢)=(3a a—h, 2a+b+c) with respect to the standard basis {e,, e,, e;} .

T(e1)=T(100)=(3,1,2)

127



T(e2)=T(0,1,0)=(0,-1,1)

T(es)=T(0,0,1)=(0,0,1)
I

0 0 1

Thus the matrix representing T is

Example: Find the linear transformation T:v,(R)—>V,(R) determined by the matrix
(1 2 1)

t 0 11 | with respect to the standard basis {ey, e;, €3} .
1 3 4 J

T(er)=e1+2e2+e3=(1,2,1)
T(92)=091+92 + €3 =(0, 1, 1)

T(es)=-e1+3e2+4es=(-1,3, 4)

(a,b,c)=a(1,0,0)+b(0,1,0)+c(0,0,1)
=ae; + be, + ce;

T(a b, c)=T(aer + be: + ces)
=aT(e)+bT(e)+cT(es)
=a(1,2,1)+b(0,1,1)+c(-1,3,4)

=(a—c,2a+b+3c,a+b+4c)

The Kernel and Range of a Linear Transformation

Definition: Let T:v »W be a linear transformation. Then the set of all vectors veVv
such that T (V) =0 is called the Kernel of T and is denoted by ker (T).

Note:
e Thekernel ofalinear transformation T:v —»W isasubspace of the domain Vv .

e The kernel of T is sometimes called the null space of T .
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Example:

1. Consider the zero transformation T:V —W such that T (V) =0 for all vev . Hence
ker(T)=V.

2. Consider the identity transformation 7:v —V such that T(v) =V forall vev. Hence
ker (T ) ={0}-

3. Consider the linear transformation T:M,,—>M,, such that T (A) =AT for all

AeM, .

i.e. all matrices of order 1x 3is mapped to its transpose. Hence ker (T ) =the zero matrix
of order 1x 3.
4. Consider the transformation T : R SR’ such that T(x,y,z) =(x,y,0). Hence

ker (T) = {(0,0, )z eR}

Example: Find the kernel of the linear transformation T :R ‘>R represented by
T(Xl, X2)=(X1— X2, X2 — Xl).

The ker(T) isthesetofall X=(x, x ) in R® such that T(x,x)=(x=-x,x —x)=(0,0).
1 2 1 2 1 2 2 1

This is equivalent to the system of equations
X;— X, =0
X, — X, =0

i.e. the solution is all points of the form X1=Xz..

Therefore ker (T) = {(x, x,) : % R}

Example: Find the kernel of the linear transformation T : R "SR’ represented by
T(V) =AV, where A= -1 2)

0 1 2}|
The ker(T) is the set of all V=(\{ Vs va) in R® such that T(vl, V., v3)=(0, 0).

But T(v)=Av
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Theref =(0,0
erefore Av(l( _1) 2\|(v1\ o
o 1 2% 7(o)

3

Writing the augmented matrix of this system in reduced row-echelon form gives
v
o ol (o

o 1 2f%|lo)

v,+4v; =0 v, =4y,
Le.
vV, +2v, =0 V, = =2V,

Va

\'
3

Let v, =k. Therefore v, =—4v, =-4k, v, =-2v, =-2k

The family of solutions are
—4K -4
REEANE

I
SR AR

Therefore ker(T):{k (-4,-2,1):ke R} .:Span{ (-4,-2,1) }

Remark: Here one basis for ker(T) is B={ (-4, -2,1) }

Definition: Let T:v W be a linear transformation. Then the set of all vectors WeW
such that T (V) =W is called the Range of T and is denoted by range(T).

Example:

1. Consider the zero transformation T:V —W such that T (V) =0 for all vev. Hence

range(T ) = {0}.
2. Consider the identity transformation T7:v —V such that T(v) =V forall vev. Hence
range(T ) =V .

Theorem : The range of a linear transformation T:v —W is a subspace of w .
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Corollary: Let T: R "> R" be the linear transformation given by T(V)=Av. Then the

column space of Ais equal to the range of T. (In the echelon form, the columns which
contains 1 in the diagonal is called column space )

Definition: Let T:v - W bealinear transformation. The dimension of the kernel of T is
called the nullity of T . The dimension of the range of T is called the rank of T .

Note: If T is provided by a matrix A then the rank of T is equal to the rank of A.

Dimension Theorem: Let T:v »W be a linear transformation from an n-dimensional
vector space V into a vector space W . Then the sum of the dimensions of the range and
kernel is equal to the dimension of the domain.

i.e. dim(range) + dim(kernel) = dim(domain)

rank (T ) +nullity(T ) = n

Assume that the linear transformation T is represented by an mxn matrix A.
Assume that the matrix A hasarank I.
Now rank (T ) =dim(range of T)=dim(column space)=rank (A) =r
Since matrix A has a rank I, its equivalent row reduced echelon matrix B is I'XI
identity matrix.

Also nullity(T ) = dim(kernel of T) = dim(solution space) =n—r.

Therefore rank (T )+nullity(T)=n

Example: Let T R "= R" be alinear transformation defined by T (V) = AV where V isin
( 1 2 0 1 - \
R°and A =’ 21310 ’
-1 0 -2 0 1

lo 0o 0 2 8)

i. Find the basis for kernel of T and hence find nullity(T ).
ii. Find the basis for range of T and hence find rank(T).
The  ker (T) is the set of al v= (v, v2, va, va,vs) in R °* such that

T (Vl, V2, Va3, V4, V5)=(0, 0, 0, 0).
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But 1 (V) = AV.

(1
2
1
0

Therefore Av=(0, 0, 0, 0)

OO O L, N

Writing the augmented matrix of this system in reduced row-echelon form gives

2
-3

0 1 —1\|(:l,q 0!
3 1 0, |_[0
2 0 1y | [0
0 2 ey 0
Vi
Z —11 _21\Iﬁ Vz) (g\l
31 glell
J, 1)
6 1 1\”}\5)(0\
3 12|||"2 ol
01 4V :\o‘
R T
\s)
50 g 10
30 6 \\:2 _|0
01 4|y, 8
00 oy |
O _pfj¥) (O
0 2" fof ..
3 gLl
J, 10
s

V,+2V;—Vs=0

vV, +4v; =0

Let v, =m, Vs =n. Therefore
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Vs = —4vs =—4n
V, =V; +2V. =m+2n
Vi=—2V3+Vs =—2m+n

The family of solutions are

A -2m+n -2m n -2)

v, m+2n m [an [1\ [
vy I= m =l m |[+| o l=ml 1 [+nl |
‘ _an H 0 1_4n M ‘_4"
W U AL B G R G

Therefore ker (T)={m(-2,1,1,0,0),n(1, 2,0, -4,1); m, neR}.
Therefore one basis for ker (T) is B={ (-2,1,1,0,0),(1,2,0,-4,1) }

Therefore nullity(T ) = dim(kernal) = 2

Since the leading 1’s appear in columns 1, 2, and 4 of the reduced echelon form of A,

which was calculated in equation (1), the corresponding column vectors of A form a basis
for the range of T .

One basis for the range of T is B={ (1, 2,-1,0),(2,1,0,0),(1,1,0,2) }.
Therefore rank (T ) = dim(range) = 3
Also rank (T ) +nullity(T ) =3+2 =5 = dim(domain) .

Example: Find the rank and nullity of the linear transformation T : R "> R’ defined by the

(1 -1 2)
matrix A=|O 1 3|.
LO 0 OJ

Since A is in row-echelon form and has two nonzero rows, it has a rank 2. So, the rank of
T is 2,and dim(domain) = 3.

We know that rank (T ) + nullity(T ) = dim(domain)
2 +nullity(T ) =3
nullity(T ) =1
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Matrices for Linear Transformations

Standard Matrix for a Linear Transformation: Let T :R"— R " be a linear transformation

(a1 ) (ar ) (ain )

.
suchthatT(e):|| &, I T(e )=I az o , T (e )== 8y,
1 ! 2 . n . .

|
|
o L L)

(6111 i o alnw
a
Then the mxN matrix whose N columns correspond to T (e ), A= || % 3 l is
a & LA
K mil m2 mn )

such that T (V) = AV forevery V in R". Aiscalled the standard matrix for T.

Note:

The standard matrix for the zero transformation from R " into R" is the mxn zero

matrix.

. » intoR" is |,.

The standard matrix for the identity transformation from R
Example: Find the standard matrix for the linear transformation T:R >R defined by
T(x Y, 2)=(x-2y, 2x+Y)

First find the imagesof €,, €,, €,.

IENTEN [( ﬂ W OY| _(0)
107, e 2y TEET Y o)

o)y fo) o)

Therefore = standard  matrix for the given linear transformation is
(1 -2 0)

A:(T ():T(e,) :T(eg))=|\2 1 OJ.

T(e) T

Transformation Matrix for Nonstandard Bases: Let v and w be finite-dimensional
vector spaces with bases B and B' respectively, where B={v,, v,, ......, Vop- IfT:V 5w
is a linear transformation such that
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(o)

aZ 1

[T(v)] =

din
[ | , [T (V )} =ra? I ... LT (V )—| =(a2n ], then the MxN matrix

| S
i) o) )
(4 8, . a,)
whose N columns corresponds to |_|_T (Vi )—U ) A=l R | is such that
’ | a a .. a .
Um m )/
|_|_T(V)—LJ = A[V]B forevery V inv .
Example: Let T:R*>R’ be a linear transformation defined by T (>1< , x2 ): (x1 + x2, xl, X 2)
Find the matrix for T relative to the bases B={(1 -1),(0,1)} and
B'={(1,1,0),(0,1,1), (1,0,1) } . Also find the image of v = (5, 4)
Let B={v, v,} and B'={w,, W,, W,}.
From the definition of T (x,, x,) =(x,+X,, x;, x,), we have
T(V,)=T(1 -1)=(0,1, -1) =1w, +0W, 1w, (solving (0, 1, -1) = aw, + bW, +cw,)
T(V,)=T(0,1)=(1,0,1)=0W,+0W, +1W,

Therefore the coordinate matrices for T(V,) and T (V,) relative to B' are

[T(VI)WB‘Z (1)) and [T(VzﬂB.z gw
4 y

The matrix for T relative to the bases B and B' is formed by using the coordinate
matrices as columns..

(1 0)
Therefore A:| 0 0|.
o
The image of v =5, 4) is AV:{(% (0)}5\1:{8)
| ha) ||
IR S Y
(o 7 )
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. 2 2
Example: Let T:R>R be a linear transformation defined by
T(X0 %) =(X,+X,, 2, —X,). Find the matrix for T relative to the bases

B={(12),(-1,1)} and B'={(1,0),(0,1) }.

LetB={v,V,} and B'={w,, W, }.

From the definition of T (x,, x,) =(x,+X,, 2x, —X,), we have
T(V,)=T(1,2)=(3,0)=3W, +0W,

T(V,)=T(-1,1)=(0, -3)=0w, —3w,

Therefore the coordinate matrices for T(V,) and T (V,) relative to B' are
[T(v)] 2(3\ and [T(V)] :(O
Ll | Lol | ]

\0) \-3)
The matrix for T relative to the bases B and B' is formed by using the coordinate

matrices as co ng..\
Therefore A= 0 3|

v )

Inner Product Spaces

Let V be avector space over F . Aninner producton V is a function which assigns to each
ordered pairs of vectors U,V in V ascalarin F denoted by (u, v) satisfying the following

conditions.
i (u+v, wy=(u, w)+ (v, w)

ii. (o, V)=o (U, v)

iii. (U, V)=(v, u), where (v, u) isthe complex conjugate
iv. (u,u)>0 and (u,u)=0 iff u=0
A vector space with an inner product defined on it is called an inner product space.

Definition: Let V be an inner product space and let XeV . The norm of X, denoted by
IX|, is defined by ||X[= \/(x,x).
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Result 1: Result 2: Result 3:

(u, av) =(aw, u) (u,v+w)=(v+w, u) (u, 0>=<u, OO>
=o(v, u) ={v, u)+(w, u =0(u, 0)
=0

~

Il
Q|
—
<
[
~—
Il
=
=
<
~—
+
—~
=
<
~—

Similarly (0, v)=0

Il
K
—~
[
<
~
Il
—
£
<
~
+
—
[
=
~

Example: Show thatin an inner product space

(cw-+ By, w) =(aw, w)+(Bv, ) (u, v+ pw) = {av + pw, u)
=o(u, w)+B (v, w) = {av, u)+(Bw, u)
= (v, u)+B (w, u)
=0 (v, u)+ B (w, u)
—a (U, v)+ B (u,w)

Example: Show that V, (R) is an inner product space with inner product defined by

(X,¥) =X1Y1+XeY1 —X1Y2 +4X2y2 where X=(X1, X;) and Y=(yi, y2).

Let X, Y, ZeV;(R) and o eR.

M (X+Y, Z)=(xa+Yy1)Zi+(Xe+Y2) Zi—(Xa+Y1) Z, +4( X2+ Y2) Z,
= (X1Zy+Y1Z,)+ (XeZy+ Y22, ) — (XaZy + YiZ, ) + A(XeZ, + Y22,
=(X1Zy+ X Zy— XaZy+ 4% 2, ) + (Y1Zy + Y2 Zy — Y1Z, + 42 Z,)
- (%, 2)+(¥ 2)
(i) (00X Y) =0XY; +0X, Y, —0X, Y, + 04X, Y,
=a (X1Y1+XaY1—XaY2 +4X2Y2 )
(i) (X Y) = XY+ %Y = XY, +4%,Y,

=YX+ Y X — Yo Xy + 4YZX2

=(¥, X)
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(iv) (M Xy=XX +XX —X X +4x X =x2+4x>>0
11 21 12 2 2 1 2
(x,x)=0 iff x;=x,=0
Example: Let V be the vector space of polynomials with inner product given by
1

<f1g>:rl' f(t) g(t) dt. Let f(t)=t+2and g(t)=t*-2t-3. Find () (f,g) (i) [f].

t

0 <f,g>:t[f(t)g(t)dt Gy (f, f)= t[ £(t) f (1) ot
=[ (t+2)(-2t-3) dt =[ (t+2) dt
=j (t-7t-6) dt j(t2+4t+4) dt
(2 Y (e 2 Y
L——?——GIJ = —+4—+4tJ

3 2 ),
_ 19
4 3

Therefore ” f ” = \/T_g
3
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EXERCISE

1. Apply the Gram-Schmidt orthonormalization process to transform the following basis
() B={(1,1),(0,1)} for R’ (i) B={(0,1,0), (1,1,1)} for R® into an orthonormal basis.
Use the Euclidean inner product for the given vector space.

2. Find an orthonormal basis for the solution space of the homogeneous system of linear
equations: X;+X, +0x;+7X, =0; 2X, + X, +2X; +6X, =0.
1o
1 2

o o)

3. Find theleast square solution of the system of the system AX = D where A=

)
and b= 1.

o

4. Let T:R° >R be a linear transformation such that T (1,0,0) = (2,4,-1),
T(0,1,0)=(1,3,-2) and T (0,0,1) = (0,-2,2). Find T(0,3,-1).

5. Let T:R° >R be a linear transformation such that T (11,1) = (2,0,-1),
T(0,-1,2)=(-3,2,-1) and T(1,0,1)=(1,1,0). Find T(2,1,0). Hint: Linear Independence

vectors

.p4 4
Let the linear transformation I R =R is defined as T(V):AV where

6
100 0
A_(o 1001
_’0 020}'
Lo 001}

Find the image of V=(1, 1,1, 1). Also find the preimage of W=(1,1,1,1).

7. Find the kernel of the linear transformation T :R>FR represented by
T (X1, X2) =(X1+ 2%z, — X1, 0).

8. Find the(ki:rnel ofthe linear transformation T : R "SR’ represented by T (V) =AvV,
where A = -1 -2\
L—l 2 3 J
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9. The linear transformation T is defined by T(V)=Av. Find (a) ker(T) (b) nullity(T )
(-1 1) A_(o -2 3 |(5 -3)
(c) range(T) and (d) rank(T) if (i) A:l\1 1/1 (ii) K4 0 11) (iii) A=||%L 1 \

\ J

10. Let T:R'>R’ be a linear transformation defined by T(x, X, x )=(X —x , x —X ).
1 2 1 2 2 3

Find the matrix for T (i) relative to standard basis (ii) relative to the bases
B={(111),(1,10),(0,1,1)} and B'={(1,2),(1,1)}. Also find the image of
v=(1,2,-3)

ANSWERS
( ) )
(1)(l)|§@(\£\1@ (i) (0.1, 0), f f
\ )\ \
2. (—E,E,—{Ol\w(— o , 1)
L 333 ) 30 B30 30 +30)

3X—_5/3\ 4 3,11,-8 5. (50,1 6 1,1,2,1 1,1,1/2,1
K=y ) 4 (L9 5 (01 6 (121 (11U21)

7 0.0} -{0}

8. k(-4,-2,1) 9.(i) (a) {(0,0)} (b) 0 (c) R*(d) 2

9.(i1) (a) {(-11k,6k 4k):keR} (b) 1 (c)R" (d) 2

9.(iii) (a) {(0,0)} (b) 0 () {(4m,4n, m—n): m, neR} (d) 2
10. (i) (6, -7) (ii) (-1, 4)
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Inner Product

Definition: Let u, v and W be vectors in a vector space, and let C be any scalar. An inner

product on v

following axioms.
L (u,v)=(v, u)

2. (U, V+W)=(U, V)+(U, w)

3. c(u,Vv)={cu, V)

is a function that associates a real number

(U, v) and satisfying the

4. (v,Vv)>0 and (v, Vv)=0 ifand only if v=0

Note:

A vector space with an inner product is called an inner product space.

Example: Euclidean Inner Product (dot

product) in R?.

Let U=(uy, uz), V=(v1, v2), W= (w1, wz)
LUV )= (u1, uz) (v, v2)
=U,V, +U,V,
=V,U; + VU,
- ()
2. VH+W=(vi+wg, V2 +W2)
(U, V4+W = (g, Uz )-(V1+Wa, V2 +W2)
= UyVy + UgW; + UpV + Uy W,
= UyVy + Uy + UyWy + U W,
=(U, V)+(u, w)
3. ¢V el (u u2)(va, v2) 1|
=c[usv1 +UaVz |
= CU,V; + CU,V,

(cu,V)=| [ (cus, cuz )-(va, v2 ) 1]

=CU,V; + CU,V,

4. (V,V )= (vi, v2 ) (v, v2)
=V +Vv2 >0

Example: Show that the function defined as
(UV )= (us, uz)-(v1, v2) =uavi+2uv; IS an

Inner Productin R? .

1o UV )= (uy, uz)-(vi, v2)
=U,V, + 2U,V,
=V,U; + 2V,U,
=(Wu)

2. VW= (Vi+Wi, V2 +Wz)

(U, V+W )= (ug, Uz )-(Ve +Wa, V2 +W2)
=UV; +UW, + 2U,V, + 2U,W,
= U,V + 2U,V, + U, W, + 2U,W,
=(U, V)+(Uu, w)

3. cUV cl| (un u2)(va, v2) 1]

=c[uwvs +2uav; |
=CU,V, +C2U,V,

(cu,V)=[| (cus, cuz )-(v1, v2 ) 1]

=Cu,V, + 2Cu,V,

4. (V\V )= (v1, v2)-(v1, v2)
=V,V; +2V,V,
= vf + 2v§ >0
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If V=0, then (v, v )=(0,0) If V=0, then (v,v )=(0,0)
Therefore( v,V) =0 Therefore( v,v) =0

Example: Show that the function defined as (u,V)=(u, u,)-(v,,v,) =uyv, —2u,v, is not an
Inner Product in R?.

Consider the fourth axiom: (V,\V) =(v,, v,)-(v,, v,) =Vv,v, - 2v,y,

Letv=(1,1). Then <V,V }: (1,1)«(1,1)=1-2=-1<0, the axiom fails.

Example: For polynomials P=a +ax'+ax*+----+ax" and =b +bx*+b x> +----+b x"
0 1 2 n 0 1 2 n

in the vector space P,, the function (p, ()=a.b, +a,b, +a,b, +----+a,b, is an inner

product.

(all alZ \ and B _ (bll b12 \
| | | | 202
& %) G

function (A, B)=ayby, +a5,by, + 8,0, +a,b,, is an inner producton M,,,.

Try this: Let A= be matrices in the vector space M . The

Properties of Inner Products

Let u, v and W be vectors in an inner product space, and let be any real number. Then
1. (0,v)=(u,0)=0
2. (U+Vv, Wy=(U, W)+(V, W)
3. (U,cv)=c(u, V)

Definition: Let u, v be vectors in an inner product space V .

1. The norm (length) of U is ||U ||= J(U, U> .

2. The distance between U and V is d (u,v) =|u -V

<u > 0<0<m

3. The angle between two non zero vectors U and V is cosO = ” ”’ "V”
u vV

4. U and V are orthogonal if (u, v)=0.
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Note:

e If U isorthogonal to V,then OU isorthogonalto V.
e If U, and u, is orthogonal to V, then U, +u, is orthogonal to V.

e Zero vector is orthogonal to every vectorin Vv .

Note:
e If |u| =1, then U is called a unit vector.

u } . ) )
— is called unit vector in the direction of U .

]
Properties:
* |luj=o0 e d(uv)=0
e |u|=0ifandonlyifu=0 e d(uVv)=0 ifand onlyif u =v
o feuf=[ef|u « d(uv)=d(vu)

Example: Let P=1-x+3x? (=x-x?, be polynomialsin P2. Determine
@ (p, q) () |p] (i) d(p,q)
® < P, q >: aobo +asb; +axb, =(1)(0) +(-1)(1) +(3)(-1) =-1-4=-5

(i) (p,p)=aca,+aa +aa, = (1)(1) +(-1)(-1) +(3)(8) =1+1+9=11

[PI=(p. P)=+11
(iii) p—q:(1—x+3x2)—(x—x2)=1—2x+4x2

(P—0, P—0Q)=CsCo +CiCs +C,C, = (1)(0) + (—2)(—2) + (4)(4) = 4 +16 = 20

d(p.a)=[P—d|=\(p-a, p-a)=v20

Orthonormal Bases

Definition: A set of vectors S in an inner product space V is called orthogonal if every
pair of vectors in S is orthogonal. If each vector in the set is a unit vector, then S is called
orthonormal.
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Note:

If s is a basis, then it is called an orthogonal basis or an orthonormal basis,
respectively.

If s is an orthogonal set of nonzero vectors in an inner product space v, then s is
linearly independent.(Theorem)

If v is an inner product space of dimension N then any orthogonal set of n

nonzero vectors is a basis for v .(Corollary)

Example: The standard basis for R" is orthonormal.

Example: Show that the set S :“( 2 2\ f f Jf f f f |} isan

[\ )

orthonormal basis for R®.

To show that the three vectors are mutually orthogonal.

VV—|£ \/2|\/6£\/6|— \/]r2+0+\/]r20
J\
ol gadlfg gt

} 6 6)( 3 3 3\ 18 18 18

S RS T e e

\ VAN )

To show that each vector is unit vector

”VlH_ \ V11V1 \/ \/(£ 0, £j'(\£§aoa \/25}2 Z+O+§=l

( N[
V= vy = o = Jkg g,gﬂ_

3 3V (3 BB 3

N o e R A e

Therefore the given set is an orthonormal basis for R3.

Example: Show that the set S={(2,3, 2 -2),(1,0,0,1),(-1,0,2,1),(-1,2,-1,1)} is a
basis for R*.
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We know that the dimension of R* is 4. Also R* is an inner product space. Here the set S
has 4 non zero vectors.

To show that the four vectors are mutually orthogonal.

V.'V,=(2,3,2,-2) (1, 0,0,1)=2+0+0-2=0 Since the set S is orthogonal,
by corollary (Note 3), it is the

V,'V,=(2,3,2,-2){-1,0,2,1)=-2 4-2=
1'V5=(2,3,2,-2)(-1,0,2,1) +0+ 0 basis for R*.

V,V,=(2,3,2,-2) (-1,2,-1,1)=—2+6-2-2=0
V,"V,=(1,0,0,1){~1,0,2,1)=-1+0+0+1=0

V,"V,=(1,0,0,1)4(-1,2,-1,1)=-1+0+0+1=0

ViV, =(-1,0,2,1)+(-1, 2, -1,1)=140-2+1=0

Gram-Schmidt Orthonormalization Process

The procedure for finding a orthonormal basis is known as Gram-Schmidt
orthonormalization process, It consists of the following three steps.

1. Begin with a basis for the inner product space. It need not be orthogonal nor consist of
unit vectors.

2. Convert the given basis to an orthogonal basis.

3. Normalize each vector in the orthogonal basis to form an orthonormal basis

1. Let B={V,V,, -, V,} be abasis for |alternative form of the Gram-Schmidt
an inner product space V . orthonormalization process
2. Let B'={w, ws, -, wa} be the
: o W, _V,
orthogonal basis for v where w; is given | th= ||W ” = ||V ”
by W
U=_72 where W=V —<v,u >u
W, =V, > wel 22 et
W =V — {"?Wl)w u=" Wwhere w =v ~(V U -V U U
2 2 <V\/1, V\/1> 1 3 ”WS” 3 3 3 171 3 2" 2
w=v - W) w - ) w )
<W1’ W1> <W2’ W2> )
. u :ﬂ where
: "l
Wn=vn_<vn’u1>u1 <V u > - _<Vn!un1 n-1
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W =V —<Vn’W1>W— <VnaWz>W R
T o w, W) T (w, W)

<Vn’ Wn—1> Wn,l
<Wn—1’ Wn—l >

W
3. Let U; =—'. Then the set
[
B"={U, Uz, -, un} isan orthonormal
basis for v .

Note: An orthonormal set derived by the Gram-Schmidt orthonormalization process
depends on the order of the vectors in the basis

Apply the Gram-Schmidt orthonormalization process to transform the basis
B= {(3 4), (1, 0)} for R? into an orthonormal basis. Use the Euclidean inner product for
R?.

Let B={V, V,} be abasis for an inner product space | Alternative form of Gram-Schmidt
R? where v ~(3,4),V_=(1,0) process:
1 2
U = W, _ Vv,
—_— j— 1 IVl
Let W, =V, = (3, 4) W Vil
I CL))
(Vor Wo)= (1,0). (3.4))=3+0=3 9. 39)
(W, Wy)=(3,4), (3,4))=9+16=25 (3.9
W Vv9+16
w=v-")w (3 4
22w, w) =L§' 3)
3
=(1,0)-—(3,4
(1,0) 25( ) U =" where
S -
:(1’ 0)—| 725 ’2—5- |
\ )
16 12
RGN
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Therefore orthonormal basis is B"={u, u,} andits | W, =V, —(V,, u,)u,
orthonormal vectors are given by (1,0)-/(1,0), (3 4) (3 4)
N <1 s
w62 ls5)ls's
16 12)[(16 12\ 256 144 400 \5 JK5 5]
25 25)\25 25) 625" 225~ 625 _(10) (g1_2\
’ 125’25 )
16 12
U =W2 _ 257 25 16 12
| 400 [25 Ej
625 u )
(423 2wl
5 5
16 12
- " &)
&%k %)
\ )\ )
12\ (16 12}
\25 )=\
256 144 20
——+
625 625 25
(4.3
(5' 5
Therefore orthonormal basis is
B"={U, u}
Apply the Gram-Schmidt orthonormalization process to transform the basis

B= {(1 1,0), (1,2,0), (0,1, 2)} for R® into an orthonormal basis. Use the Euclidean inner

product for R®.

Let B={V,, V,,V,} beabasis for an Alter{llvative Vform of Gram-Schmidt process:
inner product space R® where u = W =
V,=(1,1,0),V,=(1,2,0),V,=(0,1, 2) I T

ICER)
Letw, =V, =(1,1,0) J(@1,0), (11,0))
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(V,, W)= (1,2,0),(1,1,0))=1+2+0=3

(W, Wy)=(1,1,0),(1,1,0)) =1+1+0=2

W =V —<\/2’W1>w
22 (g, )
~(1,2,0)-2(1,1,0)

f3 3 )

7 )

(11 )

125

~(1,2,0)-

Vo, W;)= (0,1, 2), (1 1,0))=1

v3w>=<(012)L
(1.1,0), (1,

(
W, W, =/ -
7

{

1
< 2
(W, W)= 1,0
<

N s

=(0,0, 2)

Therefore orthonormal basis is

B" = {ul, U2

vectors are given by

(110) |(1 1 0\|
N AW AN

, U, } and its orthonormal

= W
|| 1||

_(1L19
(1 | 1 ,0\
vz vz
u-= W, where
2 e
W, =V, _<Vzv U1> U,
=(1,2,0) <(1 2,0), L(_l _1
V2 A2
=(1,2, o)—(_1 +_2+0J(i'
2.\ J2
~(1.2, o)}_{,f N
T
(22 )
u-="
2 el
(_l,l,o\
{22 J
- I_*’%OI’ L
\/<L 22 )| 22 )>
(11 (11
lz2 Jlaa )
i+i+0 i
4 4 J2
o1 1))
NN
u-= W where
el
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%&@(11\Mﬂwwwwm

it~ GRS by RS RV
2w =(0,1,2)-/(0,1, 2), 0 0
L LEE < 77 NE 7
o2yt Yo\t L o)
(ws, ws) = (0, 0, 2)-(0, 0, 2) =4 < Lﬁﬁ Nz
1(1 1 ) 1 1 1
w, (0,0,2) 2= AP ottt
T TFF BT
3 —012)-(1 o)l L o)
LEE JLzz J
-(0,0,2)
u=_"%
el
_ (0,0, 2)
J(0.0.2). (0.0.2))
(0,0,2)
A
~(0,0,1)

Therefore orthonormal basis is B"={Uu,, u,, u,}

Try this: Apply Gram Schmidt process to construct an orthonormal basis for V3(R) with
the standard inner product for the basis {vi, vz, vs} where v;=(1,0,1), v»=(1,3,1) and
vs=(3,2,1).

Answer: The orthogonal basisis {(1 0,1),(0,3,0), (1,0, —1)} .

Example: Let V be the set of all polynomials of degree <2 together with the zero
polynomilal. V is a real inner product space with inner product defined by

(f g > =.[ f (x) g(x) dx, Starting with the basis {1, X, XZ} , obtain an orthonormal basis for
-1

V.

Letv =1,v =x and vV =x°.
1 2 3

LetwW,=V,=1
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1 1

<V21W1>=J. V,-W, dx:J. X dx=0
4 J,

1 1

(W11W1>:j W,-W, dxzj 1dx=2
-1 %1

(w,w) *
= )(_9.1

2
=X

\" ! o2 1, 5
( 31W1>=I V3-W1dx:_[ X .1dx:2I X -1dx:§
-1 1 0
1 1
<V31Wz>=j V;-W, dx:_[ x?-x dx=0
=1 1
1 1
(Wi Wa) = [ W, o= [ 1L dx=2
=1 41
W 1 1 1 2 5
< 2’W2>:I W, -W, dX:I X-XdXzZI X dng
-1 b} 0

7 (wew) T (wwy)
, 213 0
=x"-_ 11— " -x
2 2/3
:XZ—E
3
w 1 1 1\2 8
(s W3>_j W,-W, dx = (x 2| =45
" o )
1
Hence the orthogonal basis is %u =1, U =X, U =x°— L
L 1 2 3 _3J

150



Therefore the orthonormal basis is

u — Wl — Wl :i
1 ”Wl” \/<W11 W1> \/5

U, = W, _ W, __X =£x
i ”Wz ” \/<Wza W2> \/2/3 ‘/5
U - wo_w _ -1 — 2 _

3 3

N>
Towsl Jow, w) 38745 NG

Example: Find an orthonormal basis for the solution space of the homogeneous system of
linear equations: 2x, +X, —6X; +2X, =0; X, +2X, —3%X; +4X, =0; X, + X, —3%;+ 2%, =0.

Given system of equations can be expressed as AX =B where
( 2 1 -6 2\ [ {ﬁ 0

A=11 2 -3 4 X _| oz and B=|0|. Apply Gauss-Jordan method to reduce the
S AT

)

augmented matrix (A, B).

(1—620)

(AB)=j1 2 3 40

1 1 3 20

\ )

21 -6 2 0
:rO 0 w —>2R —R
6 0]R, .
0 0 2 0'R >2R —-R
k )3 3 1
0 -18 0 O Rl—)3R1—R2

=0 3 0 6 0
0 0 0 0 0OIR—>3R-R
k )3 3 2

Let X, =m, X, =n, then 3X2 =6n, X2 =2n and 6X1 =-18m, X3 =-3m.

Therefore the solution of the system has the form
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X, -3m -3m
| [ 5] fa]
sl lmypmyle] el ofe
Vo) U ) U ) \")

So, one basis for the solution space is B={V,, V,} where v, =(-3,0,1,0); Vv, =(0, 2, 0,1)

) 3.0
|

To find an orthonormal basis, use the alternative form of the Gram-Schmidt
orthonormalization process, as follows.

W v

Cowy vy

_ (-3,0,1,0)
\/((—3, 0,1,0),(-3,0,1,0))
(-3,0,1,0)
“er0+1r0
3 g 1 g
B o
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Therefore orthonormal basis is B"={U,, u,}

Example: Find the least square solution of the system of the system AX = b where
(2 1) (2]
A='"1 2'andb=' 0"
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Example: Find the least square solution of the system of the system AX = D where
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Fitthe least square line for the data (1,2), (2,3), (3,5) and (4,7).

Let y =mx+c be the required straight line where m is the slope and ¢ is the y intercept.

Now X:gzl_O:Z.S and y:g:£:425
n 4 n 4
X y X — X y—y (X—;)(y—§) (X—;()Z
1 2 45 225 3.375 2.25
2 3 65 425 0.625 0.25
3 5 0.5 0.75 0.375 0.25
4 7 1.5 2.75 4.125 2.25
10 17 8.5 5

X=X —_
But m:Z( _)(_yz y)zﬁzlj
Z(x - x) 5
Since ; and 9 passes through the line y = mx+c, we have )72 m>?+ c.
Therefore 4.25 = (1.7)(2.5) +C

c=0
Therefore the required line equationis y= (1.7) X.
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